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Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and Consequences
of Necroinflammation. Physiol Rev 98: 727–780, 2018. Published February 21,
2018; doi:10.1152/physrev.00041.2016.—When cells undergo necrotic cell death
in either physiological or pathophysiological settings in vivo, they release highly immuno-
genic intracellular molecules and organelles into the interstitium and thereby represent the

strongest known trigger of the immune system. With our increasing understanding of necrosis as a
regulated and genetically determined process (RN, regulated necrosis), necrosis and necroinflamma-
tion can be pharmacologically prevented. This review discusses our current knowledge about signaling
pathways of necrotic cell death as the origin of necroinflammation. Multiple pathways of RN such as
necroptosis, ferroptosis, and pyroptosis have been evolutionary conserved most likely because of their
differences in immunogenicity. As the consequence of necrosis, however, all necrotic cells release
damage associated molecular patterns (DAMPs) that have been extensively investigated over the last
two decades. Analysis of necroinflammation allows characterizing specific signatures for each partic-
ular pathway of cell death. While all RN-pathways share the release of DAMPs in general, most of them
actively regulate the immune system by the additional expression and/or maturation of either pro- or
anti-inflammatory cytokines/chemokines. In addition, DAMPs have been demonstrated to modulate
the process of regeneration. For the purpose of better understanding of necroinflammation, we
introduce a novel classification of DAMPs in this review to help detect the relative contribution of each
RN-pathway to certain physiological and pathophysiological conditions.
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I. GENERAL INTRODUCTION

A. The Concept of Necroinflammation

In this review, we discuss the cell death pathways (Origin)
and different classes of DAMPs (Consequences) of necroin-
flammation. We define necroinflammation as the immune
response to necrosis in a living organism. Necrosis is exe-
cuted as a regulated process through defined signaling path-
ways such as necroptosis, ferroptosis, and pyroptosis or
may happen in a nonregulated fashion as traumatic necrosis
(FIGURE 1). Whenever a cell undergoes necrosis, its intracel-

lular content is released as damage associated molecular
patterns (DAMPs). As a consequence of necrosis, DAMPs
bind to different molecules on various other cells
in the interstitium. Here, we provide a classification of
DAMPs which is suggested in TABLE 1. As a mechanistic
basis for this classification, we recommend the DAMP
sensing as a differentiation criterion. With our increasing
understanding of the distinct signaling pathways of reg-
ulated necrosis, a growing body of evidence suggests that
RN pathways trigger different immune responses. There-
fore, a given RN pathway may specifically fine tune the
immune response for specifc needs to regenerate a given
tissue or to fight given microbes more effectively. Differ-
ences in necroinflammation may therefore explain why
several distinct cell death pathways are conserverd in our
genome.

B. General Introduction to Regulated
Necrosis

Necrosis generally does not occur in an uncontrolled man-
ner, at least not in nontraumatic diseases. Instead, it follows
genetically determined signaling pathways. The cell death
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community has been addressing the question of uncon-
trolled cell death for decades, thereby uncovering the mo-
lecular pathways of regulated necrosis (RN). Many RN
pathways have been described, and it is a major task to
unravel the overlapping and indistinguishable features of
these pathways. This problem required some consensus on
the definitions used that have been summarized in the
Guidelines of the Nomenclature Committee on Cell Death,
the most current version of which being in line with this
review (181).

Necrosis, defined by plasma membrane rupture (PM-rup-
ture), inevitably results in death of a particular cell. At this
point the cell is dead by definition. As a consequence of
PM-rupture, the intracellular content gains access to the
interstitial space, to other cells, matrix components etc. The
accessibility of surveillance immune cells to mitochondria,
lysosomes, peroxisomes, and other organelles suggests that
necrosis per se is a very immunogenic event. Intravital mi-
croscopy has visualized the process of necrosis in vivo
(384), and DAMPs released during this process were in
some cases referred to as cell death associated molecular
patterns (CDAMPs) (330). The amount of DAMPs released
by a cell is probably much more immunogenic when com-
pared with a single molecule on the surface of a living cell,
e.g., the incompatibility of single proteins such as HLA-
mismatches and blood group antigens in the setting of
transplantation.

It is of interest to realize that the process of regulated
death takes some time. During this process, cells metab-
olize plenty of ATP to drive transcription of hundreds of

molecules, including pro- and anti-inflammatory cyto-
kines. Proteases are very active in some necrotic type cell
death subroutines and process long-lasting cytokines,
such as Pro-interleukin (IL)-1� and Pro-IL-18 in case of
pyroptosis. When such cells, often macrophages, finally
undergo pyroptosis, the immunogenicity is not limited to
the standard cytosolic arsenal of DAMPs, but contains
some additional cytokines that enhance the immunoge-
nicity beyond the level of default DAMP release. In con-
trast, active transcription of IL-33 during necroptosis
stabilizes regulatory T cells in the surrounding microen-
vironment and thereby functionally dampens the immune
response (540, 570). Analyzing these factors for each cell
death subroutine, we will introduce a hierarchy for im-
munogenicity of necrotic cell death pathways in this re-
view. It is because of the immunogenicity of regulated
necrosis that we should understand these pathways and
interfere with them therapeutically as indirect, but puta-
tively highly potent immunosuppression.

C. General Introduction to DAMPs

1. The danger/injury model in immunology

More than 20 yr ago, in January and April 1994, the danger
hypothesis was first published proposing that a discrimina-
tion of the immune system between self and non-self does
not sufficiently explain immune reponses. Its evolutionarily
determined driving force was proposed to become alarmed
and to react by any form of cell stress and/or tissue damage
including allograft injury. Two major considerations led to
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FIGURE 1. Origin and consequences of
necroinflammation. Necrosis is executed as
a regulated process through defined signal-
ing pathways such as necroptosis, ferropto-
sis, and pyroptosis or may happen in a non-
regulated fashion as traumatic necrosis.
Whenever a cell undergoes necrosis, its in-
tracellular content is released as damage-
associated molecular patterns (DAMPs). As
a consequence of necrosis, DAMPs bind to
different molecules on various other cells in
the interstitium. For a classification of
DAMPs which is suggested in TABLE 1 of
this review, we recommend the DAMP sens-
ing as a means of classifying DAMPs. In this
review, we will discuss the cell death path-
ways (Origin) and different classes of DAMPs
(Consequences) of necroinflammation. We
define necroinflammation as the immune re-
sponse to necrosis in a living organism.
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the development of this hypothesis: 1) clinical trials with
patients that received a renal allograft led to the conclusion
that allograft injury inevitably resulted in a potent immune
response in humans (338), and 2) Polly Matzinger (428)
suggested the conclusion that the “self/non-self” theory is
inappropriate based on theoretical considerations. During
the upcoming decades, further modification of this model
by the two groups led to a more sophisticated outline of this
hypothesis. This was triggered in particular by the develop-
ments and achievements published in the emerging field of
innate immunity. Today, most scientists agree that tissue
injury and metabolic changes in any tissue injury activate
the innate immune system. The response may provide a
broad range of protection including killing of invading
pathogens, removing dead cells and cellular debris, but also
balancing metabolic or psychological irregularities. Impor-
tantly, this response is thought to promote regenerative re-
pair of destroyed tissues. Finally, when dangerous cell
stress/tissue injury is associated with the presence of “non-
self” or “altered-self” antigens (or even “self”), this unique

defense system sends an SOS by inducing a supportive im-
mune response.

How can the danger hypothesis be explained on a molecu-
lar level? In the early 2000s, the term damage associated
molecular patterns (DAMPs) was first used (336, 578) This
allowed the understanding of “danger signals” as defined
molecules. In the 2003 article, Land (336) wrote: “Dam-
age-associated molecular patterns (’DAMPs’) such as
heat shock proteins, arising in the stressed allograft,
serve as endogenous ligands for and interact with Toll-
like receptors (TLRs) on cells of the innate immune sys-
tem such as donor- or recipient-derived dendritic cells
and donor-derived vascular cells and, by this engage-
ment, activate them.” In the 2004 article, Seong and
Matzinger (578) wrote: “It is currently thought that im-
mune responses are initiated by pathogen-associated mo-
lecular patterns or by tissue-derived danger/alarm sig-
nals. . . . Many of them might be part of an evolutionarily
ancient alert system in which the hydrophobic portions

Table 1. Classification of DAMPs involved in inflammation, adaptive immunity, and nociception

Classes of DAMPs*
Categories of Cognate Recognition Receptors/Sensors

(Cell Bound, Humoral)

Class Ia DAMPs � DAMPs such as HMGB1, HSPs, nucleic
acids including mitochondrial and cytosolic DNA

Sensed via binding to “classical” recognition receptors
(� PRRs such as TLRs, RLRs, ALRs) on/in innate
immune cells such as phagocytes including DCs,
thereby triggering signaling pathways

Class Ib DAMPs � DAMPs such as CALR and eATP Recognized by “nonclassical” recognition receptors
such as the scavenger receptor CD91 and the
purinergic receptors P2X7 thereby contributing to
phagocytes including DCs activation

Class II DAMPs � DAMPs (e.g., eATP, uric acid) operating
as second signals to activate the NLRP3 inflammasome

Sensed by NLRP3 receptor to form assembly of the
NLRP3 inflammasome contributing to phagocytes
including DCs activation

Class III DAMPs � DAMPs exposed on stressed cells such
as MICs and ULBPs

Recognized by the activating NKG2D receptor, e.g.,
on NK cells thereby contributing to NK cell
activation

Class IV DAMPs � DAMPs in terms of
neoantigens/neoepitopes (such as NMHC-II, oxidized
phospholipids, actin cytoskeleton, etc.)

Recognized by binding to preexisting natural IgM
antibodies to activate the complement cascade
thereby contributing to inflammation

Class V DAMPs � dyshomeostasis-associated molecular
patterns (such as accumulation of unfolded proteins in
the ER; intracellular ion perturbations, hypoxia, redox
imbalance; etc.)

Sensed by sensors of the UPR (e.g., PERK) or sensed
by NLRP3 receptor thereby contributing to
inflammation and DC activation

Class VI DAMPs � metabolic DAMPs (such as succinate) Recognized by the “nonclassical” recognition receptor
GPR91 thereby promoting inflammation

Class VII DAMPs† � nociceptor-activating DAMPs (such as
osmotic challenges, low and high temperature,
capsaicin)

Sensed by nociceptors such as TRPA1 channels and
TRPV1

*The attempt to classify DAMPs as depicted in this table is restricted for this article only and with focus on their crucial role in allograft rejection.
†Class VII DAMPs sensed by nociceptors have been tentatively included in this table to show that DAMP-induced responses of the innate immune
defense system may exceed the traditional phenomena of inflammation and adaptive immunity. Of course, this approach is debatable and we
freely admit that there are still some deficits in our classification waiting for a final resolution. CD, cluster of differentiation; DAMPs,
damage-associated molecular patterns; DCs dendritic cells; eATP, extracellular ATP; GPR91, G protein-coupled receptor 91; HMGB1, high
mobility group box 1; IgM, immunoglobulin M; MICs, MHC class I chain-related proteins; NK, natural killer; NKG2D, natural killer group 2
member D; NLRP3, NLR family, pyrin domain-containing protein 3; NMHC-II, nonmuscle myosin II-A heavy chain; PERK, the protein kinase R
(PKR)-like endoplasmic reticulum kinase; PRRs, pattern recognition receptors; P2X7, purinergic receptor P2X7; RLRs, retinoic acid-inducible
gene (RIG)-I-like receptors; TLR, Toll-like receptor; TRPA1, transient receptor potential cation channel subfamily A member 1; TRPV1, transient
receptor potential vanilloid subtype 1; ULBPs, UL16 binding proteins.
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of biological molecules act, when exposed, as universal
damage-associated molecular patterns to initiate repair,
remodeling and immunity.”

In fact, the very first clue of the existence of such molecules
was provided by studies published already in 2000/2002 by
Shi et al. (587) and Shi and Rock (586). These authors
demonstrated that tumor cell death may provide a trigger
for the stimulation of T cells. Thereafter, in 2003, uric acid
was first ascribed a role as a danger signal (585), which was
later broadly accepted as first non-bacterial DAMP (85).

2. About DAMPs, PAMPs, and MAMPs

As originally defined, danger signaling DAMPs are endog-
enous molecules, that is, encoded by the host’s endogenous
genome. As constitutive DAMPs, they are ad hoc, that is,
immediately released under certain conditions of major cell
stress or tissue injury and do not require protein synthesis.
Constitutive DAMPs may activate cells of the innate im-
mune system by operating, extra- or intracellularly, as pre-
existing molecules, aggregated molecules, fragments of
molecules (e.g., hyaluronan fragments), or intracellularly
dislocated molecules (e.g., presence of nuclear DNA in the
cytosol).

As previously suggested for pathogen-associated molecular
patterns (PAMPs), DAMPs may be sensed by Toll-like re-
ceptors (TLRs), the prototype pattern recognition receptors
(PRRs). It is also possible that DAMPs are recognized
through stimulation of “nonclassical” receptors such as
scavenger receptors. These are found in the plasma mem-
brane or within intracellular compartments of innate im-
mune system. Accordingly, DAMPs are either 1) dislocated
molecules inside of a challenged cell, 2) sorted to the cellular
surface of stressed cells, 3) secreted during the early prog-
ress of regulated necrosis (see below for details), 4) released
upon plasma membrane rupture, or 5) shed from the af-
fected extracellular matrix (ECM) (50, 348, 391, 551, 568).
Importantly, constitutive DAMPs also include “homeo-
static danger signals,” denoted here as dyshomeostatic–as-
sociated molecular patterns to preserve the acronym
“DAMPs.” These DAMPs reflect and are associated with
molecular perturbations of tissue homeostasis, such as pH
shifts, redox imbalance, intracellular ion perturbations, and
specific signaling pathways of regulated necrosis. Intrinsic
DAMPs may intracellularly signal dangerous pathological
stress (179).

From constitutive DAMPs, inducible DAMPs may be dis-
tinguished which can be regarded as molecules “newly
made” during ongoing transcriptional activities, for exam-
ple, in cells undergoing regulated cell death. DAMP-in-
duced secretion of type I interferons (IFN) may be regarded
as an example of inducible DAMPs, that is, DAMPs which
may amplify (or even restrict) the immunogenicity of a dy-
ing cell.

Another difficulty to exactly define danger signaling mole-
cules refers to the inclusion of so-called exogenous DAMPs.
For example, a clear distinction of DAMPs from PAMPs is
difficult to make. PAMPs in terms of pathogen-associated
molecular patterns were originally defined as exogenous
molecules derived from microbes to activate PRR-bearing
innate immune cells, thereby providing the immune system
with the critical distinction between self and non-self (431).
On the other hand, lipopolysaccharide (LPS), a prototypic
PAMP, is an active component of cigarette smoke, thereby
acting as an exogenous DAMP (230). Likewise, allergens, at
least in a wider sense, are also regarded as exogenous
DAMPs able to instigate allergic diseases via recognition by
PRRs such as TLRs (455, 597). However, one has to differ-
entiate here. Some allergens such as pollen diffusates, for
example, from Olea europaea, possess proteases that can
damage epithelial tight junction proteins thereby activating
the innate immune system (656). Some other allergens such
as the house dust mite allergen Dermatophagoides pteron-
yssinus group 2 (Der p 2) indirectly activate the innate im-
mune system via interaction with the TLR4 signaling com-
plex by mimicking MD-2, an adapter protein of TLR4 (46).
Again some other allergens such as Fel d 1 from cat dander
associate with TLR4 via binding to one of its ligands (239).
Yet, in contrast to those indirect modalities of innate im-
mune activation, the metal allergens nickel, cobalt, and re-
cently also palladium act as true bona fide exogenous
DAMPs by triggering innate immune activation via direct
stimulation of TLR4 signaling (528, 531).

The definition of DAMPs is not trivial because of the pleth-
ora of different structures that are released. Additional
complexity is added by their role in pathogen-induced in-
flammation, generally believed to be exclusively caused by
PAMPs. Evidence accumulates for DAMPs to represent es-
sential triggers during immunity against invading microbes,
not limited to bacteria, but also including viruses (104, 225,
279, 406, 559, 637). Recent data support this hypothesis.
In the mammalian gut, the innate immune system may be
responsive only to pathogenic bacteria, but to spare the
commensals (281, 497, 619). As a reponse to this observa-
tion, it has been required to classify microbe-associated mo-
lecular patterns (MAMPs) as a separate term. However, the
molecular basis for the recognition of commensals and their
associated tolerance remains to be investigated. One possi-
ble explanation is the sensing of pathogen-induced DAMPs
instead of exclusively surveilling for MAMPs. Accordingly,
at least for the in vivo scenarios, we here propose for rea-
sons of precision the equation: exogenous MAMPs � en-
dogenous DAMPs � operating as PAMPs or (as valid for
some bona fide innate immune response-promoting mole-
cules such as LPS) PAMPs � DAMPs.

In this article, we will focus on endogenous DAMPs of
(mainly) constitutive and inducible origin only. In regard to
the generation of inducible DAMPs, we will discuss the time
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period between the decision of a cell to undergo a certain
type of regulated necrosis and the burst of the plasma mem-
brane. Characterized by active production of pro- or anti-
inflammatory cytokines, this period can be regarded as a
window of opportunity where a dying cell can shape/direct
its immunogenicity via generation of inducible DAMPs in
adjunction to the release of constitutive DAMPs during fi-
nal death associated with complete plasma membrane rup-
ture.

3. Role of DAMPs in human diseases

There is increasing evidence from clinical observations and
trials that DAMPs play a crucial role in the pathogenesis of
human diseases (346, 347). It is beyond the scope of this
review to list the data on DAMPs in each particular disor-
der, but we will refer to immunologic and cardiovascular
diseases as examples that may help to understand the gen-
eral nature of DAMPs and necroinflammation. In general,
DAMPs are of importance to human diseases whenever
necrotic cell death is involved.

With respect to allorecognition upon solid organ transplan-
tation, the danger hypothesis was first mentioned in the
early 2000s (335–337, 340, 341, 351). A growing body of
literature suggests that allograft injury results in DAMP
release (2, 116, 124, 148, 159, 247, 343, 345, 384, 460,
499, 513, 652, 692, 729). This may be of particular impor-
tance for the “canonical” (oxidative) injury that has been
demonstrated to be inevitably associated with donor brain
death and during ischemia-reperfusion injury. It is unclear,
however, to which extent this immune response may con-
tribute to acute or chronic (antibody-mediated) rejection.
Recipient-derived monocytes and dendritic cells (DCs) rap-
idly invade the graft following the process of transplanta-
tion and may respond to the mass of DAMPs in an allograft
by eliciting a robust adaptive immune respone. Donor spe-
cific antibodies (DSA) and panel reactive antibodies (PRR)
may originate from the very early phase after transplanta-
tion through this mechanism. Consequently, DAMPs may
result in all forms of allograft rejection, providing a proto-
type example for the current concept of necroinflammation
(2, 116, 124, 148, 159, 247, 343, 345, 384, 460, 499, 513,
652, 692, 729).

A role of DAMPs is also being discussed in cardiovascular
diseases (215). For example, in atherogenesis, vascular in-
jury-induced DAMPs, via activation of smooth muscle cells,
vascular macrophages, and DCs, orchestrate a network of
processes including vascular inflammation, intima fibrosis,
and autoimmune responses leading to atherosclerosis
(345). In addition, myocardial infarction as a complication
of atherosclerosis provokes an intense reperfusion injury-
induced inflammatory response. Functionally, left ventric-
ular remodeling, diminished left ventricular ejection frac-
tion, and heart failure (646c) may follow. Necroinflamma-
tion, therefore, may provide a concept of the recently

identified observations in preconditioning, e.g., during car-
diac surgery (232, 437).

Necroinflammation may also explain diseases in critically
ill patients. During hypoxia, ischemia, trauma, surgery, and
critical infections, DAMP release is the molecular driver of
systemic hyperinflammatory syndrome such as systemic in-
flammatory response syndrome (SIRS) (610, 629). Accord-
ingly, the use of DAMPs as biomarkers or therapeutic tar-
gets in intensive care patients is meanwhile highly appreci-
ated and will certainly contribute to improve the outcome
of these acute life-threatening diseases in the near future.

Moreover, there is also an emerging role for DAMPs in
metabolic diseases based on a strong link between in-
flammation and metabolic dysfunction. DAMPs such as
the high mobility group box 1 (HMGB1), extracellular
adenosine triphosphate (eATP), and nucleic acids were
described to be involved in the inflammatory response in
metabolic disorders including, but not limited to, diabe-
tes, gout, obesity, and metabolic syndrome (185). For
example, type 1 diabetes mellitus involves DAMP-in-
duced autoimmunity. This process may result in dysfunc-
tion and destruction of �-cells. Notably, stress of the endo-
plasmic reticulum (ER) reflecting the presence of “homeo-
static” DAMPs, as induced, for example, by accumulation
of prolonged hyperglycemia-induced (misfolded/unfolded)
pro-insulin, results in the unfolded protein response (UPR)
that is suggested to contribute to the inflammatory downfall
of �-cells observed in patients with type 1 diabetes mellitus
(150, 438, 590, 685). Along similar lines, DAMPs have
been found to play a crucial role in several autoimmune
diseases, the development of which is caused by both ge-
netic predispositions and environmental factors (238, 405,
490). For example, as reviewed in Reference 346, in regard
to the pathogenesis of systemic lupus erythematosus (SLE),
accumulating evidence suggests oxidative stress-related cel-
lular injury (ferroptosis, see below) to be of central impor-
tance. This autoimmune disorder results in a failure to re-
move necrotic debris and thereby in a persistent activation
of the immune system. During this process, it is tempting to
speculate that antibodies against dsDNA may emerge. Im-
portantly, necrosis-associated novel autoantigens may
function as DAMPs, cytosolic self-RNA, and self-dsDNA
(323, 405, 406, 514, 569). SLE-associated DAMPs may
subsequently trigger DCs which ignite adaptive immune
responses (310). In addition, as shown by more recent stud-
ies, inadequate removal of cellular remnants in the germinal
centers of secondary lymphoid organs may result in the
presentation of autoantigens by follicular DCs to autoreac-
tive B cells that had been generated by chance during the
process of somatic hypermutation, a process leading to loss
of peripheral tolerance (407, 514).

Furthermore, a role of DAMPs is being discussed in neuro-
degenerative diseases (628). For example, in Alzheimer dis-
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ease, following primary neuroinflammation (caused by still
unknown injurious agents), �-amyloid, S100 proteins, and
HMGB1 are regarded as secondary key DAMPs that fur-
ther exacerbate production of proinflammatory cytokines,
thereby contributing to disease progression (102). The re-
lease of proinflammatory cytokines in neurodegeneration
may well be associated with regulated necrosis, as recently
demonstrated for amyotrophic lateral sclerosis (256).

Most importantly, modern developments in oncoimmunol-
ogy regarding mechanisms of immunosurveillance and
elimination of cancer cells are also based on the danger/
injury model. In fact, increasing evidence from oncoimmu-
nological research work during the last decade has shown
that, in analogy to DAMP-induced pathways leading to
alloimmunity/allograft rejection, distinct DAMP-induced
pathways, evoked in the course of “immunogenic cell
death” (ICD) in terms of a peculiar instance of regulated cell
death (RCD) of tumor cells, can also result in antitumor
immunity/tumor rejection (189, 321, 336, 338, 428, 578,
585, 621, 752), probably with an outstanding role for RN
(646a) rather than apoptosis (see below).

Here, we will comprehensively summarize and attempt to
provisionally classify DAMPs. Subsequently, RN pathways
as sources of DAMP emission will be highlighted. Finally,
we will discuss evidence for the role of DAMPs and RN in
both allograft and tumor rejection which reflect similar in-
jury-initiated, DAMP-induced, innate/adaptive immune-
mediated scenarios of fundamental type.

II. REGULATED NECROSIS

A. Why Do We Evolutionary Conserve
Pathways of Regulated Necrosis

For the cell itself, it does not matter how it dies. However, it
does matter for its environment. Most likely, the reason for
the genetic conservation of several subroutines of regulated
necrosis is the difference in immunogenicity to certain parts
of the innate and/or adaptive immune system as a response
to different challenges that the organism persistently con-
flicts with because of microbes. The delay between the de-
cision to undergo a certain type of regulated necrosis and
the burst of the plasma membrane provides an important
window of time for these cells to actively produce or mature
pro- or anti-inflammatory cytokines that may direct the
strong inflammatory response to the DAMPs released into a
more or less systemic inflammation. This window is just as
narrow as it has to be to prevent viral or bacterial expan-
sion. Upon massive necrosis, as it happens during ischemic
damage of an organ, however, cytokines and chemokines,
compared with the release of intracellular organelles includ-
ing peroxisomes, lysosomes, nuclei, and mitochondria, can
only be of comparably minor importance, and it would be

entirely wrong to assume that there is an anti-inflammatory
form of regulated necrosis. In the following, we will intro-
duce the three major pathways of regulated necrosis,
namely, necroptosis, ferroptosis, and pyroptosis.

B. Necroptosis

Among the pathways of regulated necrosis, necroptosis rep-
resents by far the best-studied RN subroutine, and transla-
tional medicine on necroptosis prevention (380, 383) has
already reached phase 2 clinical trials (227). Necroptosis is
distinct from other forms of regulated necrosis because it
requires phosphorylation of the pseudokinase mixed linage
kinase domain like (MLKL). The only known kinase to
phosphorylate MLKL is receptor-interacting protein kinase
3 (RIPK3). All details of our current understanding of the
necroptosis pathways can not possibly be listed here, so the
introduction to necroptosis is biased to what we consider
the most important facts to understand necroptosis as the
origin of necroinflammation (386, 462). FIGURE 2 provides
a simplified and general overview of the signaling pathway
of necroptosis.

1. The signaling pathway of necroptosis

The necroptosis signaling pathway is controlled predomi-
nantly by kinases and E3 ligases. Death receptor-mediated
activation of MLKL, the essential and defining mediator of
necroptosis (607), requires both of these signals: phosphor-
ylation and loss of polyubiquitination.

The default signal of TNFR1 results in the polyubiquitina-
tion of receptor-interacting protein kinase 1 (RIPK1),
RIPK1-dependent and RIPK1-independent NF-�B activa-
tion (135, 690), expression of cellular FLICE-inhibitory
protein (cFLIP), and resistance to cell death (320). The
RIPK1-precipitating complex formed in this scenario has
been referred to as complex 1 and is reviewed in detail
elsewhere (45, 303, 492, 495, 646a, 680). Upon deubiqui-
tination of RIPK1 (see below for details), pro-caspase-8
may be recruited to this complex via a death domain (DD)
that binds the DD of Fas-associated protein with death
domain (FADD), resulting in forced proximity of pro-
caspase-8 and activation by proteolytic cleavage of the
caspases to form a functional caspase-8 homodimer capable
of cleaving effector caspases, such as caspase-3, caspase-6,
and caspase-7 to mediate and execute apoptosis (320). Im-
portantly, however, instead of forming homodimers,
caspase-8 favors the dimerization with the long version of
cFLIP to assemble a cFLIP/caspase-8 heterodimer (493,
494). This heterodimer, by incompletely understood
means, but including RIPK1, RIPK3, and CYLD cleavage,
inactivates RIPK3, the key kinase in the necroptotic path-
way. The inhibitory effect of the cFLIP/caspase-8 het-
erodimer on necroptosis explains why caspase-8-deficient
mice are embryonically lethal, and therefore explains the
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reversal of the lethal caspase-8-ko phenotype on a RIPK3-
deficient background in mice (276, 493). Consequently, the
loss of either cFLIP or caspase-8, or the inhibition of this
complex by virally expressed or synthetic caspase inhibi-
tors, unleashes the activation of RIPK3 upon RIPK1-medi-
ated phosphorylation (126, 127). Until today, RIPK3 is the
only identified kinase capable of phosphorylating MLKL
and the only kinase that mediates necroptosis downstream
of RIPK1 (95, 235, 730). However, RIPK3 signaling may
also result in necroptosis-independent signaling (9, 471,
481). Both RIPK1 and RIPK3 contain a rip homotypic in-
teracting motif (RHIM) domain which is typical of the
necroptosis pathway (277, 278). Upon caspase-inhibiting

conditions, it is believed that deubiquitinated RIPK1 can no
longer intercalate its RHIM domains between the RIPK3-
RHIMs and therefore RIPK3 auto-oligomerizes to form a
higher order structure referred to as the necrosome, a sce-
nario that might explain the lethal phenotype of RIPK1-
deficient mice and the viability of the RIPK1-kinase dead
knock-in mice (127, 273, 480, 541). RIPK3 in the necro-
some is present in a phosphorylated manner, and it is not
entirely clear to which extent this phosphorylation is medi-
ated by RIPK1 or RIPK3 itself. However, the necrosome is
stabilized by HSP-90 and CDC-37, two chaperones that are
required for the fully active necrosome (364, 365). The
RHIM domain of RIPK1 controls necrosome formation by
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direct engagement of the DNA-sensing molecule DAI which
for itself contains two RHIM domains (277, 275, 453, 622,
644). One of these RHIM-domains appears to exert anti-
necroptotic activity as it keeps the other DAI-RHIM do-
main in check. Upon loss of the RIPK1-RHIM, necroptosis-
mediated DAMP release and subsequent inflammation in
vivo is mediated through DAI also referred to as Z-DNA
binding protein 1 (ZBP1) (376, 482).

An active necrosome structure is required to phosphorylate
the activation loop of the pseudokinase MLKL which ex-
poses a four helical bundle (4-HB) upon 1) phosphorylation
by RIPK3 in its activation loop and 2) the dephosphoryla-
tion of a persistent phosphate residue in the hinge region
between the 4-HB and the default protein (465, 466, 546).
Once pMLKL is fully active, it was demonstrated to oli-
gomerize and bind to phosphatidylinositol-4,5-bisphos-
phate (PIP2) in the plasma membrane (134, 669). It has been
proposed that pMLKL forms pores in the plasma mem-
brane to mediate plasma membrane rupture (669), but this
remains to be demonstrated in cells or in vivo. In fact, recent
data indicate that necroptosis regulates membrane repair
mechanisms by means of the endosomal sorting complexes
required for transport (ESCRT) machinery downstream of
pMLKL (213). In contrast, the absence of ESCRT compo-
nent results in MLKL-dependent necroptosis, indicating a
complex network of membrane interactions downstream of
pMLKL (213). Obviously, in that scenario, phosphoryla-
tion of the activation loop of MLKL is not sufficient to
mediate necroptosis (213, 716, 728). At least two indepen-
dent groups reported that vesicles are shed from the surface
of necroptotically dying cells (213, 728). This ESCRT-de-
pendent mechanism extends the time to plasma membrane
rupture (213). However, the precise execution mechanism
of necroptosis may be arranged; we do understand necrop-
tosis as a signaling pathway to defend against microbes,
especially viruses that express caspase inhibitors (235, 486).

It is beyond the scope of this review to introduce necrosome
formation downstream of the activation of Toll-like recep-
tors that engage the RHIM-containing protein TRIF and
the signaling of DAI (235, 274, 275, 277), that have been
reviewed elsewhere (55, 56, 278) and are currently under
extensive investigation.

2. Control of necroptosis by posttranslational
modification

The paramount decision downstream of TNFR1 signaling
is to either signal survival via complex 1, nonimmunogenic
apoptosis via effector caspases or immunogenic necroptosis
via RIPK3-mediated phosphorylation of MLKL. Only the
latter is associated with the release of DAMPs (see below).
The most important molecule that navigates this life-and-
death decision is RIPK1, more precisely the polyubiquitina-
tion status of RIPK1. It has been nicely demonstrated that
both linear and K63 polyubiquitin chains are present in
RIPK1 in unstimulated cells, and that the loss of both of
these systems results in activation of cell death pathways. In
particular, linear ub-chains (M1) are controlled by the lin-
ear ubiquitin chain assembly complex (LUBAC) which con-
sists of the proteins SHARPIN, HOIL1, and HOIP. This
complex is antagonized by the deubiquitinase OTULIN
which removes M1-polyUb linkages (114, 168, 245, 305).
OTULIN deficiency or dysfunction results in autoimmu-
nity, rendering OTULIN an essential negative regulator of
inflammation and clearly demonstrating the importance of
this system in the concept of necroinflammation (114). K63
linkages are controlled by cellular inhibitors of apoptosis
(cIAPs) in balance with deubiquitination enzymes such as
CYLD (which also antagonizes M1-linkages) and A20
(133, 222, 498). A20 and cIAP1 have been identified as a
negative regulators of necroptosis in the early days, and
these observation deserve special credit because they paved

FIGURE 2. The signaling pathway of necroptosis. Necroptosis is defined as regulated necrosis, mediated by the molecule MLKL. Phosphor-
ylation of MLKL in the activation loop (blue phospho site in this figure) results in exposure of the 4-helical bundle (4-HB) of MLKL which allows
binding with PIP2 in cellular membranes including the plasma membrane and subsequent plasma membrane rupture that is regulated
downstream of pMLKL by the ESCRT complex. In parallel, pMLKL (phospho-MLKL) translocates to the nucleaus and results in the active
transcription of CXCL1 and IL-33. The concise mechanisms of plasma membrane rupture have yet to be defined. NSA (necrosulfonamide)
inhibits pMLKL function and necroptosis in human cells. Removal of a specific phosphate (red in this figure) in the hinge region between the 4-HB
and the activation loop of MLKL is required for pMLKL to function as a necroptosis inducer, but the phosphatase required for this process has
not been identified. The only known kinase that phosphorylates MLKL is receptor-interacting protein kinase 3 (RIPK3). Oligomerization of RIPK3
molecules through their rip homotypic interacting motif (RHIM domain, purple line in the molecules RIPK1, RIPK3, TRIF, and DAI) results in an
amyloid-like structure referred to as the necrosome, which is stabilized by CDC37 and HSP90. Engagement of the necrosome can be a
consequence of TLR-signaling through TRIF/RIPK3, DAI/RIPK3, and RIPK1/RIPK3. The best defined “default” necroptosis pathway through
death receptors such as TNFR1 requires 1) loss of linear (M1) and K63 polyubiquitin chains from RIPK1 and 2) the inactivation of caspases,
or the inability to engage caspases, e.g., by loss of FADD. Other than the necrosome, the ripoptosome additionally contains FLIPlong and FADD
and therefore is capable of signaling apoptosis, unless caspases are inhibited by either viruses or synthetic caspase-inhibitors such as zVAD.
Upon maintainance of the polyubiquitin chains on RIPK1, TNFR1 signaling results in robust activation of canonical �F��� signaling and
TAK1-mediated MAPK-signaling. These events result in a pro-survival signal. In this scenario, linear-ub chains on RIPK1 are controlled by the
linear ubiquitin chain assembly complex (LUBAC), counteracted by the deubiquitinase (DUB) OTULIN. cIAP1/2 are recruited to the TNFR1
complex by TRAF2, required for the K63 linkages on RIPK1. cIAP1/2 themselves become polyubiquitinated to function properly, and this signal
is opposed by the DUBs CYLD and A20. Fas and TRAILR, two TNFR-superfamily members, are depicted to demonstrate the standard pathway
of apoptosis in this context. Specific inhibitors of critical enzymes in this pathway are indicated in purple.
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the way for polyubiquitin-research in necroinflammation
(647, 648).

3. Necrostatins and the in vivo role of necroptosis

Necroptosis has attracted tremendous attention because it
appeared to be the solution for necrosis in general, probably
the most widespread unmet clinical need in modern medi-
cine. In fact, necrosis occurs during transplantation, stroke,
myocardial infarction, sepsis, trauma, cancer, pancreatitis,
macular degeneration, and hundreds of other pathologies.
But the dream to prevent necrosis in all of these disorders
has quickly lost its illusion when it became obvious that
prevention of necroptosis by either RIPK1-kinase inhibitors
or in vivo models of RIPK3-deficient mice provides only
partial protection from necrosis, if any.

With all the published papers on protective effects in some
in vivo models, three facts need to be kept in mind when it
comes to interpretation of these data. First, the original
compound necrostatin-1 (Nec-1) (120), a small molecule
and a hydantoin (119, 122), has been demonstrated to func-
tion as a ferrostatin (see below) with intrinsic antinecrop-
totic activity (176). In several in vivo models, protective
effects by Nec-1, therefore, may be because of ferroptosis
prevention rather than a role in necroptosis. Second,
RIPK3-deficient mice have been investigated in a broad
fashion, but as we understand today, RIPK3, as to the na-
ture of its kinase, exerts several effects beyond phosphory-
lation of MLKL, including direct effects on inflammation
(9, 471, 481). Finally, the existence of other RN-pathways
demands to identify the relative contribution of each of the
RN-pathways in a given model of necrotic disease. In fact,
employing combination therapies that target diverse RN-
pathways at the same time provide much stronger beneficial
effects (381, 385).

However, RIPK3-deficient mice are protected to a signifi-
cant extent from ischemia reperfusion injury (IRI) in the
heart (480) and the kidney (381). In addition, RIPK3-ko
mice are slightly less sensitive to the tumor necrosis factor
(TNF)-�-mediated shock model (147, 382, 480), but still
die following systemic inflammation (SIRS). Other pub-
lished beneficial effects have either not been reproduced or
have been nonreproducible. With respect to highly specific
RIPK1-kinase inhibitors (121), such as Nec-1s, ponatinib
(160, 472) and even more potent compounds, it appears
that protection from SIRS rather than protection from isch-
emic injury predominates its beneficial effects. In our hands,
Nec-1s and ponatinib did not provide any protection from
IRI in the kidney (Linkermann et al., unpublished observa-
tion). However, because RIPK3-ko are protected from IRI
and other models of ischemic injury (354, 381, 396, 480),
one potential explanation for this virtual discrepancy may
be induction of necrosis in a RIPK1-independent manner,
e.g., through TLR signaling (275) or the intracellular pro-
tein Z-DNA binding protein 1 (ZBP-1, also referred to as

DAI) (644), a protein that is actually inhibited by RIPK1
(376, 482).

C. Ferroptosis

Ferroptosis is defined as an iron-dependent form of regu-
lated necrosis that is mediated by lipid peroxidation, pre-
dominantly polyunsaturated fatty acids (PUFAs) (709).
Therefore, ferroptosis is clearly distinct from other forms of
cell death. Iron chelators such as desferoxamin (DFO) have
been investigated in isolated renal tubules that underwent
hypoxia/reoxygenation for decades, and the role of free iron
has been extensively characterized (679, 723–725). Several
studies were performed using DFO and other chelators for
acute kidney injury (AKI) (461), the outcome of which was
inhomogeneous. Some data obtained from pigs have re-
cently demonstrated beneficial effects of DFO when stan-
dardized conditions may be provided (659). Importantly,
however, the right dosing appears to be problematic, and
several reports have suggested acute kidney injury after
DFO overdose (33, 101). In addition, most of the clinical
data rely on small, poorly controlled single center trials and
therefore conclusions were naturally limited. The develop-
ment of inhibitors of ferroptosis, ferrostatins, may therefore
represent a promising novel therapeutic approach.

1. “Iron catalyzed regulated necrosis,” the signaling
pathway of ferroptosis

Being highly reactive, free intracellular iron is dangerous
(291, 357), and bound to ferritin, the oxidative capacity of
free iron and the amount of oxygen radicals is controlled.
Heavy-chain ferritin was found to be protective in models
of IRI (41), and the role of iron in acute kidney injury
induced by cisplatin toxicity has been well established
(477). Clearly, free catalytic iron represents a risk factor for
acute kidney injury as nicely demonstrated in a series of 250
patient who underwent cardiac surgery (357). When the
term ferroptosis was first ascribed to the process of iron-
catalyzed regulated necrosis, iron chelation was demon-
strated to prevent this deadly signal (130). Iron availability
in general, but importantly also during ferroptosis, is con-
trolled by phophorylase kinase G2 (PHKG2) (709). In
ferroptosis, iron-dependent arachidonate lipoxygenase
(ALOX)-mediated peroxidation of PUFAs and other
membrane lipids such as phosphatidylethanolamine and
PIP2 (mainly expressed in the plasma membrane) and
cardiolipin (CL, mainly expressed in the mitochondrial
membranes), by unknown means results in loss of NA-
DPH abundance and subsequent loss of plasma mem-
brane integrity (176, 588, 633). Constitutive ALOX ac-
tivation is antagonized by the phospholipid peroxidase
and oxidoreductase glutathione peroxidase 4 (GPX4), a
selenoprotein which employs glutathione (GSH) to reduce
H2O2 to GSSG and H2O. Indirectly, GPX4 thereby inhibits
lipid peroxidation and ferroptosis, the loss of GPX4 results
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in early embryonic lethality, and conditional inducible de-
letion of GPX4 from neurons or renal tubular cells later
during life results in lethality as well (62, 107, 176, 218,
265, 715). NADPH is required for another enzyme, gluta-
thione reductase, to recycle GSH from GSSG, and the action
of this enzyme results in ~90% of glutathione to be present
in its reduced form in most cells (22). Consequently, 1) loss
of intracellular GSH, 2) pharmacological inhibition of
GPX4, and 3) loss of the GPX4 protein result in spontane-
ously occurring ferroptosis.

Besides recycling by the glutathione reductase, intracellular
concentrations of GSH are maintained by activity of the
GSH synthase which requires the substrates glutamine, cys-
teine, and glycine to function. A glutamate/cystine anti-
porter in the plasma membrane referred to as “system XC-
minus” provides the cells with cystine which intracellularly
is metabolized to cysteine, the rate-limiting amino acid for
GSH synthesis (580). This antiporter consists of the two
subunits SCL7A11 and SCL3A2. SCL7A11 is expressed
under the control of the p53, and a connection between p53
and ferroptosis has therefore been suggested and has initi-
ated an extensive scientific debate (31, 67, 180, 263, 352,
371, 626, 671, 700, 714). However, there are additional
aspects to consider with respect to the p53-ferroptosis in-
teraction. This connection appears to be likely relevant be-
cause the p53 gene is in close proximity to some ALOX
genes, but the connection between iron, p53, and PHKG2
may be more complex than simply through genetic regula-
tion (709). In cancers, p53 and lipoxygenases have been
linked several years ago (296).

The activity of system XC-minus is compromised by the
compound erastin which shifts the balance to less GSH
production, less redox capacity of GPX4, and more lipid
peroxidation, and therefore is one of the ferroptosis induc-
ers (FINs). Alternatively, ferroptosis can be experimentally
induced by the direct GPX4 inhibitor RSL3 and several
other ferroptosis-inducing agents (588, 710). Importantly,
as a characteristic sign of regulated cell death pathways,
ferroptosis was demonstrated to be extensively metaboli-
cally regulated (589), and several proteins involved in fer-
roptosis have been detected in a human haploid-cell screen
(131), but these proteins need to be investigated in more
detail in several settings to understand their role in the fer-
roptosis pathway. More clearly, in a genetic approach, the
deletion of the GPX4 gene locus results in lethality (62, 107,
715) and the conditional deletion of GPX4 from renal tu-
bular cells resulted in tubular cell ferroptosis within 48 h
following the inducible gene knockout which can experi-
mentally be prevented by the addition of inhibitors of fer-
roptosis (ferrostatins). Perfusion of hand-picked renal tu-
bules with erastin results in a synchronized necrotic change
of renal tubular morphology which was termed synchro-
nized necrosis and apparently explains the process of acute
tubular necrosis (ATN), so-called “muddy brown casts,” a

clinical diagnostic criterion of acute kidney injury (AKI)
(385). FIGURE 3 was assembled as example of the currently
identified key players in ferroptosis.

2. Ferrostatins

Ferrostatins are the strongest small molecules for the pre-
vention of IRI by a single compound (108, 385). No other
compounds yielded a comparable level of protection from
isolated renal tubules or in vivo in kidney and liver models.
Originally found in a screen for inhibitors of erastin-in-
duced ferroptosis in HT1080 cells, ferrostatin-1 (Fer-1) was
identified (130), basically acting as a lipid antioxidant.
Fer-1 is the most commonly used compound to study fer-
roptosis in cells, and therefore, it is of importance to men-
tion that also the first described inhibitor of necroptosis,
Nec-1, functions as an effective inhibitor of ferroptosis
(176). In addition, the plasma half-life and the absorption in
liver liposomes along with the plasma stability are far from
optimal, and the statistically significant effects seen in in
vivo models (385, 420) most likely underestimate the ther-
apeutic preclinical potential of ferrostatins. Other than
Fer-1, the compound 11–92 was much more effective in
preventing tubular necrosis (595), and further develop-
ments of 16–86 in direct comparison with its inactive de-
rivative 16–79 yielded strong effects in preclinical models
of AKI. However, 16–86 is not stable in plasma over sev-
eral hours, and further compounds are currently under de-
velopment. Similarly, liproxstatin-1 was developed and in-
vestigated in a model of liver IRI with strong beneficial
effects (176). One particularly tempting approach focuses
on the development of a ferrostatin that contains intrinsic
antinecroptosis activity. In theory, Nec-1 has demonstrated
that this shall be possible!

3. Ferroptosis and cancer

With respect to ferroptosis, there are several aspects to con-
sider in cancer, especially in diffuse large B-cell lymphomas
and renal clear cell carcinomas (710). First, p53 was dem-
onstrated to directly inhibit the expression of the SCL7A11
subunit of the system XC-minus (67, 180, 263, 714). Im-
portantly, p53 and the machinery of ferroptosis may also be
interconnected on other levels, such as a transcriptional
level. In this sense, the p53 encoding gene lies in direct
proximity to several ALOX genes, possibly suggesting an
overlapping regulation. Second, free iron is important in the
regulation of cell death in cancer (467, 671), but processes
such as nuclear receptor coactivator 4 (NCOA4)-mediated
ferritinophagy (selective autophagy of ferritin) clearly affect
the fine tuning of intracellular free iron (413, 414). Inter-
estingly, this process is dependent on iron-dependent
proteolysis of the HERC2 ubiquitin ligase (413). Au-
tophagy, in addition, is required for several tumors to
survive, especially when p53 is mutated (706). It is there-
fore possible that the central necrosis in tumor metasta-
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ses might, at least partially, be mediated by ferroptosis to
create an oxygen gradient from the necrotic core of the
cancer to the surface cells and thereby drive neovascular-
ization and dedifferentiation of the surface cells. In sup-
port of this hypothesis, pancreatic cancers were demon-
strated to rely on glutamine supply to provide maximal
growth (600) and maintain redox balance (399). How-
ever, if high concentrations of intracellular free iron pre-
disposes for cancer cell ferroptosis, this high concentra-
tion should equally affect the surface cells, and it remains
unclear how this might be prevented by the tumor. Bear-
ing in mind the susceptibility of renal tubules to undergo
ferroptosis in a synchronized manner, it is interesting
that most ferroptosis-sensitive tumor cell lines derive

from the same uretric bud stem cells as renal tubules. All
clear cell carcinoma cell lines investigated until today
were at least partially susceptible to ferroptosis inducing
agents (FINs), such as the GPX4 inhibitor RSL3 (711).

Importantly, recent data highlight a role for ferroptosis
in plasticity of the cell state that has been proposed to
drive resistance to cancer therapies (658). Obviously, if a
cancer is capable of escaping ferroptosis, this exhibits a
remarkable survival benefit to the cancer. Ferrostatins
might therefore support plasticity of a cancer in long-
term applications. In summary, both induction and pre-
vention of ferroptosis are currently discussed as cancer
treatment options.
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FIGURE 3. Iron catalyzed necrosis: the signaling pathway of ferroptosis. During ferroptosis, peroxidation of
lipids such as phosphatidylethanolamine (PE) and PIP2 results in plasma membrane rupture, but the precise
mechanisms are elusive. Peroxidation of such lipids is largely mediated by lipoxygenases (ALOX) which are
routinely inhibited by active glutathione (GSH) peroxidase 4 (GPX4). Peroxidation requires labile iron and
therefore can be antagonized by iron chelators and modulated by all means that regulate the intracellular free
iron pool. Ferroptosis, therefore, results in failure of GPX4 function, e.g., by direct inhibition (RSL3, FIN56, and
other lethal compounds) or by depletion of the cellular GSH pool. GSH requires cystine to be imported into the
cell through the cystine/glutamate antiporter (referred to as system Xc-minus). Erastin blocks system Xc-
minus and therefore induces ferroptosis in sensitive cells. Importantly, in functional cellular units, such as renal
tubules, the redox capacity is controlled by NADPH concentrations. NADPH abundance in a dying cell might
deplete redox buffers beyond the intracellular compartment of a single cell and deplete a functional syncytium,
thereby setting cells next to the one that is dying at risk to ferroptosis. This might explain the phenomenon of
synchronized regulated necrosis (SRN).
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D. Pyroptosis

Pyroptosis is defined as inflammasome-mediated regulated
necrosis that is mediated by gasdermins. Pyroptosis has first
and most abundantly been described in macrophages as a
necrotic type cell death that is mediated by caspase activity
inside inflammasomes (408). Potassium efflux is generally
accepted as the common mechanism by which bacterial
toxins and particulate matter trigger the NLRP3 inflam-
masome (464). In addition, potassium efflux is also pro-
moted by activation of caspase-11 to indirectly activate the
NLRP3 inflammasome (553). It is beyond the scope of this
review to list the stimuli of inflammasomes in general, and
the reader is referred to excellent recent reviews on this
topic (304, 316, 332, 409, 412, 518). Inflammasome acti-
vation in the context of necroinflammation has best been
described for caspase-1/-11-dependent maturation of the
proinflammatory cytokines IL-1� and IL-18 from pro-
IL-1� and pro-IL-18, respectively (124a, 664). Pyroptosis is
thought to be mediated by plasma membrane pore forma-
tion mediated by the active, cleaved NH2-terminal fragment
of gasdermin D (GSDMD) (3, 128, 392, 565). In cell culture
time lapse videos of GFP-tagged GSDMD overexpressing
cells, GFP enrichment of the plasma membrane is observed
over several hours until a critical concentration of GSDMD
accumulates in the plasma membrane, resulting in extensive
subsequent blebbing of the cells which is followed by
plasma membrane rupture a couple of minutes later (128),
but the precise mechanism of plasma membrane blebbing
and rupture are currently unknown. In contrast to these
experiments, in liposomes, GSDMD clearly forms pores
that have been identified by several groups by means of
electron microscopy (3, 128, 392). Currently, the hypothe-
sis of pore formation is widely recognized, but we like to
point out that the biomedical evidence is limited to lipo-
somes and has not been conclusively demonstrated in cells.
Therefore, alternative explanations should not be entirely
neglegted. Biochemically, it is known that the cleaved NH2-
terminal fragment of GSDMD binds to PIP2 in the plasma
membrane (295, 583). Importantly, the two major func-
tions of the inflammasomes, cytokine maturation and gas-
dermin D cleavage, appear to happen in a mechanistically
distinct fashion, as oligomerized ASC (an inflammasome
component) is required for IL-1� maturation whereas oli-
gomerization-deficient ASC may allow gasdermin D-cleav-
age (125). FIGURE 4 provides an attempt to summarize the
current knowledge of how pyroptosis signaling may be ex-
amplified. Gasdermin-dependent regulation of necrosis is
currently under extensive investigation by several groups
(236, 295, 410, 583, 655, 663), and it will be interesting to
follow this work in the future to unravel the most burning
open questions in this field: What is the role of the many
remaining members of the gasdermin family? Does gasder-
min D deficiency in mice reveal the role of pyroptosis in
disease models of autoimmunity, sepsis, ischemic injury,
and others? Will specific inhibition of inflammatory
caspases provide a novel therapeutic strategy for these dis-

eases? What other inflammatory cytokines besides IL-1�
and IL-18 are matured and secreted during pyroptosis, and
is there a release mechanism other than plasma membrane
rupture?

E. Interconnection Between Necroptosis,
Ferroptosis, and Pyroptosis

Several nodes of interconnection between RN-pathways
have been suggested, but until today, none of these appears
to merge into a single common downstream mechanism of
regulated necrosis. Beyond the models in which gasdermin
D and pMLKL may or may not directly form pores in the
plasma membrane, unifying models that are currently
discussed include the 1) master regulation of caspase-8,
2) redox metabolome, and 3) PIP2-mediated loss of
plasma membrane integrity. These “alternative explana-
tions” to execution of regulated necrosis are discussed
because pore formation by either pMLKL and gasdermin
D has never been demonstrated in cells; the evidence is
entirely limited to highly artificial liposome investiga-
tions.

1. Model of caspase-8 as the master regulator of
necroinflammation

In apoptosis, the role of caspase-8 homodimers is very clear.
When caspase-8 is stabilized (239, 265), the homodimer
efficiently cleaves effector caspases to mediate apoptosis.
However, if caspase-8 is absent or targeted by either viral or
synthetic molecules, necroptotic signaling (see above) can
occur because of the loss of function of a caspase-8/cFLIP-
long heterodimer. This heterodimer might represent a
master regulator of cell death and inflammation (FIGURE
5). In addition, it is increasingly clear that caspase-8 is an
upstream regulator of pyroptosis, at least of inflam-
masome signaling (12, 39, 218, 221, 265). Therefore,
caspase-8 might represent a master regulator of inflam-
mation. Limitations to this model include the absence of
a role for caspase-8 in ferroptosis, as far as we know
today, and the differences in the murine and the human
system with respect to mice, that unlike humans, lost
caspase-10 during development. It has hardly been inves-
tigated in detail which roles in RN-regulation in human
cells are taken over by caspase-10 or caspase-10/
caspase-8 heterodimers.

2. Model of the redox metabolome as a common
downstream feature of regulated necrosis

We proposed a model referred to as the redox metabolome
in 2014 (646a). According to that model, changes in the
buffering capacity of cells that undergo programmed cell
death including both apoptosis and regulated necrosis
lose their capacity to efficiently prevent peroxidation.
However, recent data suggest that at least in the case of
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ferroptosis, loss of NADPH abundance is downstream of
lipid peroxidation in ferroptosis (218, 265, 588, 633).
Limitations to this model are the potential nonspecificity
and loss of redox capacity as an artificial epiphenomenon
that simply occurs after the cell dies. However, it might
be of functional and even clinical relevance when or-
ganoids and organisms are investigated (218, 265, 588,
633).

3. Model of PIP2-mediated loss of plasma membrane
integrity

A unifying model for necroptosis, ferroptosis, and pyrop-
tosis has not been proposed until today. However, given
pMLKL oligomerization at the plasma membrane and its

binding to PIP2 during the late stages of necroptosis,
functionally PIP2 becomes depleted from the rest of the
plasma membrane to a certain extent. Modification in
the concentration of PIP2 in the membrane may affect the
tethering function of PIP2 to the cytoskeleton (218, 265,
538), resulting in uncoupling of pieces of the membrane
from the cytoskeleton and potentially blebbing. Interest-
ingly, bubbles that form from the plasma membrane have
been observed during necroptosis (Green and Linker-
mann, unpublished observation). It is therefore possible
that PIP2 depletion might represent a mechanism to reg-
ulate the terminal steps of necroptosis before membrane
blebbing and rupture, possibly through an attempt of
membrane repair.

cellular stress / tissue injury
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e.g. ATP
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FIGURE 4. Pyroptosis signaling. Inflammasome engagement results in the functional recruitment of
caspase-1 that is capable of cleaving pro-IL-1� and pro-IL-18 to increase the intracellular concentration of IL-1�
and IL-18. The release of these long-lasting proinflammatory cytokines, however, might require plasma
membrane rupture. Caspase-11 homodimers are capable of cleaving gasdermin D (GSDMD). Cleaved GSDMD
binds to PIP2 (and other lipids) in the plasma membrane, and its plasma membrane concentration increases
the longer the inflammasome is active. Within a couple of hours, in cell lines, GSDMD concentrations at the
plasma membrane reach a critical threshold that results in a process of blebbing and plasma membrane
rupture, resulting in the release of DAMPs, IL-1�, and IL-18. It is beyond the scope of this review to list the
triggers of inflammasome signaling, but some of the NLRP3-activating mechanisms have been indicated.
Pyroptosis, as a means to defend against bacteria, might result in systemic inflammation and possibly
represents the most immunogenic cell death described so far. It should be pointed out that Pro-IL-18
signaling is constitutively expressed and that certainly, there are other pathways of transcription-indepen-
dent inflammasomes activation. Indeed, alternative explanations favor caspase-11 and caspase-1 to
function in distinct inflammasomes referred to as noncanonical and canonical, respectively. In such a
model, however, these pathways are functionally linked by the cleavage of GSDMD by caspase-11, the
insertion of GSDMD-Nterm in membrane, drop in cytosolic calcium/potassium sensed by NLRP3, and
activation of caspase-1.

NECROINFLAMMATION

739Physiol Rev • VOL 98 • APRIL 2018 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (157.139.021.001) on February 22, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



Likewise, it is predominantly PIP2 that is targeted in the
plasma membrane during pyroptosis by the NH2-terminal
fragment of gasdermin D, as nicely shown by time lapse
imaging. Importantly, an ~5-min period of extensive bleb-
bing precedes the plasma membrane rupture in these vid-
eos. Finally, besides phosphatidylethanolamine, PIP2 is a
major target in ferroptosis as it is among the most per-
oxidized lipids during this process. Peroxidation may re-
sult in the loss of tethering capacity to the cytoskeleton,

and indeed, in the very first time lapse videos that have
been published, blebbing-like features have been ob-
served before plasma membrane rupture. FIGURE 6
briefly introduces this concept. However, as attractive as
this model may be, it remains entirely unclear how bleb-
bing might sensitize cells for necrotic plasma membrane
rupture. In addition, concentration-dependent inactiva-
tion of PIP2 that functionally results in blebbing needs to
be shown in much more detail.
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FIGURE 5. Control of regulated necrosis by the
caspase-8/FLIPlong heterodimer. The caspase-
8/FLIPlong heterodimer clearly represents the fa-
vored stoichiometric assembly compared with a
caspase-8 homodimer. It therefore counteracts
apoptosis signaling and FLIPlong expression, e.g.,
downstream of NF-�B signaling, has been de-
scribed as a survival signal. However, the het-
erodimer also counteracts necroptosis by interfer-
ing with the assembly of the necrosome. It ap-
pears that the heterodimer also regulates NF-�B
signaling directly and might control pyroptosis sig-
naling. Therefore, this heterodimer represents a
master regulator of cell death and inflammation,
and targeting this function by compounds or viral
proteins might result in cellular damage.
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FIGURE 6. Membrane blebbing in pathways of regulated cell death. Based on evidence from time-lapse
videos, no pathway of regulated necrosis does not include membrane blebbing at certain stages of cell death
progression. Whereas described in detail for apoptosis, we are only beginning to understand membrane blebs
in necroptosis (formation of annexin V-positive exosomes, potentially reflecting a process of membrane repair),
ferroptosis (anecdotal observations of blebs hours before plasma membrane rupture), and pyroptosis (exten-
sive cellular blebbing minutes before plasma membrane ruputure following accumulation of gasdermin D
fragments at the plasma membrane). Understanding of the membrane protrusion mechanisms in all of these
pathways and the role of phosphatidylserine (PS), phosphatidylethanolamine (PE), and PIP2 in this process may
be key to detect common downstream signals in RCD pathways.
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III. A CLASSIFICATION OF DAMPs

A. The World of DAMPs

As pointed out in the introduction, TABLE 1 provides a
novel classification of DAMPs. The data that led to this
suggested model of DAMPs were based on many studies
that investigated the mode of DAMP recognition and the
cell death modality involved in this process. We consider
these two facts the most important processes in the concept
of necroinflammation (13, 20, 26, 29, 43, 52, 57, 59, 70,
88, 100, 103, 105, 132, 151, 152, 163, 169, 172, 183, 186,
190, 195, 197, 204, 205, 209, 210, 234, 237, 247, 250,
252, 254, 257, 262, 269–271, 283, 288, 293, 309, 318,
325, 333, 334, 342, 343, 350, 353, 355, 361, 372, 394,
400, 406, 418, 426, 447, 452, 454, 458, 474, 491, 503,
506, 510, 521, 527, 532, 539, 547, 566–568, 571, 577,
579, 585, 604, 611, 617, 627, 629, 630, 638–640, 646,
651, 684, 129, 698, 694, 676, 682, 691, 693, 699, 704,
712, 713, 731–733, 734, 739, 753). We are fully aware of
other attemps of DAMP classification that are justifiable
and sensible in their respect, but significantly different from
our approach (50, 75, 179, 192). Nevertheless, the nomen-
clature of necroinflammation remains confusing. For exam-
ple, DAMPs that activate PRR-expressing cells are rarely
differentiated from DAMPs that amplify the response, e.g.,
by members of the IL-1 cytokine family and type I IFNs
(421).

B. Class Ia DAMPs

These are the best described, prototypic DAMPs, including
HMGB1 (343, 617, 639), heat shock proteins (HSPs) (20,
342, 452), S100A8/A9 proteins (521, 571), nucleic acids
(269, 685, 734), or proteoglycans (568). Class Ia DAMPs
are sensed by PRRs on several cell types, and very promi-
nently on cells of the innate immune system. Pattern recog-
nition receptors that are capable of sensing this class of
DAMPs include TLRs as the default receptors. In addition,
C-type lectin receptors (CLRs) and nucleotide-binding oli-
gomerization domain (NOD) as well as leucine-rich repeat
receptors (NLRs) and retinoic acid-inducible gene 1 (RIG-
I)-like receptors (RLRs) are members of this broad system.

Absent in melanoma 2 (AIM2)-like receptors and cGMP-
AMP (cGAMP) synthase (cGAS) alongside with the recep-
tor for advanced glycation end products (RAGE) complete
the arsenal of receptors that sense class Ia DAMPs (139,
223, 269, 294, 360, 514a, 599, 643, 693, 741). Class Ia
DAMPs signal danger to the surrounding PRRs-bearing
cells such as phagocytes to trigger sterile inflammation, and
to PRR-bearing DCs to elicit adaptive immunity. In addi-
tion, these DAMPs activate sessile PRR-bearing cells,
mostly members of the innate immune system, but also
including fibroblasts, myofibroblasts, epithelial, and vascu-

lar cells. This exemplifies how repair and regeneration are
promoted by DAMPs and how a wound-healing process
following infectious/sterile injury-induced inflammation
may be initiated (10, 66, 473, 515, 641, 736).

Of note, besides promoting inflammatory processes via var-
ious innate immune mechanisms, class Ia DAMPs consider-
ably contribute to the creation of an inflammatory milieu as
soon as they trigger NLR members that are upstream regu-
lators of inflammasomes (151, 129, 316, 645, 409, 226,
266, 71, 561, 743, 308, 61, 260, 411). Inflammasomes are
higher-order structures inside the cytoplasm that orches-
trate both cell death in the form of pyroptosis and inflam-
mation. Inflammasome formation requires apoptosis-asso-
ciated speck-like protein containing a CARD (ASC) as an
adaptor protein, to allow caspase oligomerization which is
required for proteolytic cleavage of pro-IL-1� and pro-IL-18
to their mature bioactive forms (151, 316, 409, 645, 129). As
discussed above, pyroptosis involves inflammasome forma-
tion as well (316, 409). Caspase-8, caspase-1, caspase-11, and
receptor-interacting protein (RIP) kinases are associated with
inflammasome function. Whereas caspase-8 may function as a
negative regulator of RIPK3-mediated NLRP3 activation
(285), caspase-1 and caspase-11 are centrally involved in in-
flammasome function and are required for downstream effects
(see above).

Accumulating evidence suggests that ubiquitination and
phosphorylation control the degradation and thereby the
activation status and dynamics of inflammasomes (409).
Inflammsomes such as pyrin domain containing 3 (NLRP3)
and AIM2 have been characterized as DAMP sensors (61,
71, 151, 226, 260, 266, 308, 409, 411, 561, 129, 743). Two
major steps in the activation appear to be of importance.
The first signal, known as “priming,” is accomplished by
receptors including TLRs, which, for example after recog-
nition of class Ia DAMPs such as HMGB1, activate tran-
scription factor NF-�B. Nuclear translocation of NF-�B is
involved in the subsequent expression of NLRP3 and the
cytokine pro-IL-1� and pro IL-18, but also in the produc-
tion of the pro-survival protein FLIP-long.

A special case of DAMPs are histones (250, 293) that are
released whenever a cell undergoes necrosis, and in the par-
ticular case of release of neutrophil extracellular traps
(NETs). Histones significantly contribute to pathophysiol-
ogy of thrombosis, liver disease (251), and renal disease. In
the kidney, histones and NETs exacerbate acute kidney in-
jury (327, 476) as they are sensed by either TLR2 and TLR4
(7) or can activated the NLRP3 inflammasome (6). Simi-
larly, histones appear to contribute to the pathophysiology
of necrotizing ANCA vasculitis (268) and may be important
for renal transplants as they were demonstrated in trans-
plant perfusates (649). In addition, histones have been de-
tected in patients with ARDS where they may be therapeu-
tically targeted (695).
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C. Class Ib DAMPs

Another class of DAMPs, denoted here as class Ib DAMPs,
also promotes phagocyte-mediated inflammation and DC-
translated adaptive immunity by binding to other sets of
recognition molecules, defined here, quite arbitrarily, as
“nonclassical” innate immune receptors. These sensing
molecules include but are not limited to scavenger receptors
(SRs) and purinergic receptors.

Scavenger receptors consist of diverse panoply of integral
membrane proteins and soluble secreted extracellular do-
main isoforms that are structurally diverse and participate
in a wide range of biological functions. These innate im-
mune receptors are expressed predominantly by myeloid
cells and recognize a variety of ligands (516, 726). An im-
portant scavenger receptor is the molecule CD91 that has
recently gained special attention as an important receptor
on DCs to facilitate engulfment of antigens thereby contrib-
uting to the development of adaptive immunity, and in par-
ticular, antitumor immunity (69, 375). A crucial class Ib
DAMP recognized by CD91 is calreticulin (CALR), an ER-
based chaperone that when outside of the ER has emerged
to exert an explosion of crucial functions from the cell sur-
face and extracellular environment (211, 532).

Endogenous purines may stimulate P1 and P2 receptors.
Pyrimidines are best known for regulatory effects on con-
traction of smooth muscle cells and vesicle movement reg-
ulation. These may affect neurological, immunological, and
platelet aggregation function alongside with cardiac func-
tion (533). P2 receptors are expressed throughout several
tissues and were found to be implicated in innate or adap-
tive immune responses. P2 receptors have been studied in
further detail and classified as ionotropic P2X receptors
(P2XRs) that are nucleotide-gated ion channels and G pro-
tein-coupled metabotropic P2Y receptors (P2YRs; Refs.
129, 254, 487, 667). Some P2XRs are associated with cell
death, whereas this is not the case for P2YRs (254).

The endogenous ligands for purine receptors acting as
DAMPs, ATP, ADP, UTP, UDP, and adenosine, can be
released from different cell types (64, 534). In fact, the
current attentiveness of these “purinoceptors” in the field of
innate immunity is due to the observation that stressed or
severely damaged cells actively secrete nucleotides, particu-
larly eATP and monosodiumurate (MSU) that predomi-
nantly function as signaling molecules by purinergic P2 re-
ceptor activation (206, 525).

P2X purinoceptors are nonselective membrane ion chan-
nels preferably permeable to sodium, potassium, and cal-
cium that open upon binding a ligand within milliseconds
(487). P2X7 receptors have been the most intensively inves-
tigated because their activation by eATP is a key step in the
release of IL-1�via secondary activation of the NLRP3 in-
flammasome as described in the following.

P2YRs belong to the GPCR family. They consist of an in-
tracellular COOH terminus and an extracellular NH2 ter-
minus as classical seven transmembrane receptors. At least
eight mammalian P2YRs were cloned (P2Y1/2/4/6/11/12/
13/14R) with more likely awaiting discovery (1). The
DAMP eATP functions as a ligand for these receptors. Mac-
rophages and monocytes respond to “find-me” signals that
include ATP-mediated P2Y2R signaling (152, 254). Finally,
P2Y2R signaling may contribute to general leukocyte func-
tions including cytokine production and migration (for de-
tailed reviews, see Refs. 152, 254).

D. Class II DAMPs

A class of molecules that activate the canonical NLRP3
inflammasome will be referred to as class II DAMPs. They
include eATP, K� ionophores (419), MSU, pyrophosphate
and cholesterol crystals, or factors that cause lysosomal
destabilization (242, 422). These activators are sensed
without NLRP3 ligation, but still are capable of triggering
inflammasome formation, IL-1� /IL-18 release, and pyrop-
tosis (151, 266, 409, 440). Indirect activation of the NLRP3
inflammasome by class II DAMPs in cooperation with class
I DAMPs has been discovered in various disorders, includ-
ing metabolic syndrome, type 2 diabetes, atherosclerosis,
gout, reperfusion injury of the heart, neurodegeneration
such as Alzheimer’s disease, chronic kidney diseases, and
macular degeneration (718). A pivotal role in NLRP3 in-
flammasome assembly has to be ascribed to eATP that
shows a unique feature among all members of the DAMP
family and may be regarded as a “hybrid DAMP.” In fact,
eATP indirectly leads to canonical NLRP3 activation under
involvement of P2X7 and hemichannels of pannexin-1
(151, 266, 129, 713). eATP may initially engage P2X7 to
change cellular iron composition, in particular Ca2� influx
and K� efflux. See below for class V DAMPs as homeostatic
DAMPs (179). In fact, K� efflux has been intensively inves-
tigated as a trigger of NLRP3 inflammasome activation. In
addition to eATP, all of the other NLRP3 activators may
decrease cytosolic K� levels (464), however without a clear
mechanistic insight (519). NLRP3 inflammasome engaged
by eATP does not represent a uniformly activated principle
among immune cells. In DCs, TLR stimulation does not
require eATP to mature IL-1� and IL-18 (71, 129, 151,
266, 409, 713). In addition, oxidative stress, most likely
from mitochondria, and ER stress participate in the activa-
tion of NLRP3 inflammasomes. For example, ROS-medi-
ated oxidative stress, derived from mitochondria or induced
by ER stress, has been shown to serve as important inflam-
masome coactivating signals (151, 179, 226, 266, 561,
718). The thioredoxin-interacting protein (TXNIP) system
exhibits another example of an adaptor molecule for
NLRP3 (161, 151, 226, 266, 308, 561, 743). In addition,
gasdermin D (GSDMD), a capsase substrate, is required for
induction of pyroptosis and IL-1� and IL-18 release (236).
As far as we understand, there is no sorting motif for IL-1�
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and IL-18 to be directly secreted in the presence of a func-
tional plasma membrane. Altogether, however, while these
molecular mechanisms (and some more not described here)
have been proposed for activating NLRP3, a unified model
has yet to gain acceptance.

Unlike the NLRP3 inflammasome, the AIM2 inflam-
masome directly senses dsDNA. Therefore, the AIM2 in-
flammasome does not need a second signal in terms of class
II DAMPs. AIM2 is capable of recognizing self (endoge-
nous) DNA in addition to microbial DNA (260, 411). For
example, alterations of the nuclear envelope integrity are
reportedly found to cause the exposure of endogenous nu-
clear DNA in the cytosol to promote the activation of the
AIM2 inflammasome. Nuclear envelope stress can therefore
directly engage innate immune sensors to elicit inflamma-
tion (127a).

E. Class III DAMPs

Natural-killer group 2, member D (NKG2D) defines class
III DAMP recognition. Induced DAMPs in this class are
presented and sensed by the very same cells that are
stressed, and auto-activated as immune effectors. Predomi-
nantly, natural killer cells express NKG2D, but the expres-
sion is not strictly limited to these effectors. Indeed, �� T
cells and CD8� T cells may be included to sense class III
DAMPs, and also certain CD4� lymphocytes have been
assigned comparable functions (27, 28, 70, 353, 529). Class
III DAMPs recognition by such receptors is characterized as
polymorphic. Therefore, sensing of class III DAMPs is
based on mechanisms that are comparable to HLA sensing,
albeit less complex by a number of magnitudes (70).

F. Class IV DAMPs

Class IV DAMPs are classically represented by neo-epitopes
that may be found upon oxidative injury. Such oxidation-
specific epitopes (OSEs) encompass a common set of
epitopes present on various oxidatively modified self-pro-
teins and self-lipids. These DAMPs are exposed on cells
following ischemia-reperfusion injury in affected tissue as
well as on necrotic/necroptotic cells, microvesicles, and
damaged structures such as oxidized low-density lipopro-
teins (oxLDLs) lipids. As so far detected, OSEs include non-
muscle myosin heavy chain II (NMHC-II), actin cytoskele-
ton, oxidized phospholipids (oxPLs), and malondialdehyde
(MDA)-modified amino groups (52, 79, 447, 584, 638,
732, 733).

In stressful pathological situations, in which reactive oxy-
gen species (ROS) are produced in excess, OSEs accumulate
and bind to PRRs to promote sterile inflammation, a typical
example being postischemic reperfusion injury. In fact,
OSEs ligate a panel of cellular recognition receptors most of

which are expressed by macrophages including TLRs and
scavenger receptors but also soluble innate humoral recog-
nition receptors such as pentraxins and proteins of the com-
plement system (52, 387, 682).

Of special importance is recognition of OSEs by another
class of humoral innate PRRs, namely preexisting natural
IgM (nIgM) antibodies. Thus nIgM antibodies in human
umbilical cord blood, which represent naive natural anti-
bodies of fetal origin, have been shown to possess specificity
for OSEs (97). Of note, as shown in studies of intestinal and
heart ischemia-reperfusion models, OSEs such as NMHC-II
activate autoreactive natural IgM antibodies to induce the
MBL-mediated cascade of the complement system (153,
362, 584, 733).

G. Class V DAMPs

Homeostatic danger signals form the family of class V
DAMPs (179). They reflect subtle changes in the microen-
vironment during the steady state of a cell. These changes
include hypoxia-induced redox imbalance and intracellular
acidosis, as seen in cells that are sensitive for ferroptosis.
Therefore, it is not surprising that ER stress has been linked
to these conditions. An overview of this concept is provided
in FIGURE 7. Class V DAMPs induced by intracellular ion
perturbations such as intracellular K� efflux (464) or hy-
ponatremia-associated low osmolality (307) are sensed to
induce inflammasome signaling. When combined with sig-
nificant ER stress, the protein kinase R (PKR)-like ER ki-
nase (PERK) becomes a dominant player in this signaling
cascade to instigate an UPR (660, 661). However, the exact
molecular mechanisms of these sensing processes are still
elusive.

H. Class VI DAMPs

Recent insights into intracellular metabolism in DCs and
macrophages have provided new notions about a contrib-
uting role of metabolism-derived DAMPs in the activation
of these key cells of the innate immune system. This class of
metabolic DAMPs is denoted here as class VI DAMPs. In-
triguingly, both cell types have been shown to be sensitive to
metabolic reprogramming. Hypoxia and alterations of the
nutrient state (and therefore autophagy) and a response to
DAMP-triggered activation of PRRs exhibit classical exam-
ples. In fact, the activation process of DCs and macrophages
is metabolically characterized by a switch towards glycoly-
sis and away from oxidative phosphorylation (OXPHOS),
similar to the Warburg effect (“aerobic glycolysis”) in tu-
mors (297, 488). One of the key features of metabolic re-
programming in macrophages is the accumulation of the
tricarboxylic acid (TCA) cycle intermediate succinate that
operates as an intracellular metabolic DAMP. Succinate
stabilizes the transcription factor hypoxia-inducible factor
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1� (HIF-1�), thereby promoting the switch to glycolysis
and driving inflammation via secretion of IL-1� and under
involvement of the NLRP3 inflammasome (for details of
this inflammasome, see above). Mechanistically, HIF-1�
appears then to induce IL-1� directly because the gene pro-
moter for IL-1� contains a HIF-1�-binding site (109, 297,
488, 618). Of note, succinate has also been shown to oper-
ate as an extracellular DAMP when recognized by the “non-
classical” PRR G protein-coupled receptor 91 (GPR91) (17,
117a, 208, 552).

I. Class VII DAMPs

Another class of DAMPs, denoted here as class VII DAMPs,
is involved in the process of nociception that can be re-
garded as a new branch of the innate immune defense sys-
tem. In fact, pain acts as a protective mechanism to prevent
injury to tissues and prompts an individual to react to re-
move or escape the painful stimulus (65, 703). Nociception
is the process of transmission of painful signals by nocice-
ptors (that is, specialized primary sensory neurons essential
for the perception of pain) in the primary afferent nerve
fibers, which specifically respond to noxious stimuli. These
noxious stimuli are detected by nociceptors and converted
into electrical signals, which are then transmitted to the

spinal cord, thalamus, and cerebral cortex, via the discrim-
inative pain pathway, leading to the final perception of pain
(141, 170). In fact, several of the TLRs and RAGE have
been implicated to play key roles in pain signaling (289).
However, there appear to exist special “nonclassical” PRRs
including GPCRs (202, 500) and transient receptor poten-
tial (TRP) ion channels (112).

Notably, TRP ion channels have emerged as a family of
evolutionarily conserved ligand-gated ion channels that
function as molecular detectors of various external stimuli,
including mechanical perturbation and changes in temper-
ature. Several members of this family, at least six channels
from three TRP family subtypes [transient receptor poten-
tial vanilloid subtype 1–4 (TRPV1–4), transient receptor
potential cation channel subfamily M member 8 (TRPM8),
and transient receptor potential cation channel subfamily A
member 1 (TRPA1)], are expressed in nociceptors, where
they act as transducers for danger signals from thermal,
chemical, and mechanical stimuli and play crucial roles in
the generation and development of pathological pain per-
ception (112, 445, 504).

There is growing interest in this new branch of DAMP
research, and one of the best studied receptors out of the
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TRP family able to transmit pain via sensing of cellular
stress and tissue injury refers to TRPA1 (reviewed in Ref.
654). TRPA1 is a nonselective cation channel expressed in
mammalian peripheral pain receptors of neuronal and non-
neuronal tissues, and a unique aspect of its function is a
remarkable ligand promiscuity towards danger signals
when operating as a polymodal detector of both endoge-
nous and exogenous/environmental class VII DAMPs. For
example, osmotic challenges, low and high temperature,
and in the case of the Caenorhabditis elegans homolog of
TRPA1 even light, as well as a host of natural and industrial
chemical irritants and mechanical forces are known to ac-
tivate TRPA1 channels (reviewed in Refs. 485, 654, 755).

Another important receptor loaded on nociceptors is
TRPV1, which responds not only to exogenous class VII
DAMPs substances such as capsaicin, the pungent ingredi-
ent of the hot chilli pepper (175), but also to endogenous
class VII DAMPs, for example, certain oxidative lipid me-
tabolites including oxidative linoleic acid metabolites
(OLAMs) as well as oxidative arachidonic acid metabolites
(OAAMs) (505, 593). This kind of modern DAMP research
in nociception impressively shows that the peripheral ner-
vous system is obviously integrated in the innate immune
system, and there is an emerging notion that class VII
DAMP-triggered TRP channels in cooperation with the
other classes of DAMP-triggered PRRs play an important
role in maintain and restore homeostasis.

IV. DAMP-INDUCED INNATE
ALLOIMMUNITY

A. The Unavoidable Injuries to an Allograft in
the Donor and the Recipient

“Injury induced allograft rejection”: since this original pro-
posal (338), increasing attention has been given by trans-
plant clinicians to the various forms of damage to allografts
depending on a given donation procedure such as donation
after brain death (DBD), donation after circulatory death
(DCD), the use of extended criteria donors (ECD), and
living related/unrelated donors. In all those procedures, al-
lografts are potentially exposed to various injuries starting
from the gradually varying shape of the organ donor and
ending up with the uniform act of implantation-associated
postischemic reperfusion in the recipient. In DBD donors,
the strength of multiple injuries to an allograft depends on
conditions in the organ donor, that is, 1) the kind and
degree of the cerebral accident, 2) the duration and organ-
damaging episodes of the subsequent critical care period
before and under brain death condition, and 3) the time
period of organ preservation and the maneuver of final
implantation-associated postischemic reperfusion in the re-
cipient. Of note, during the critical care period (under con-
tinuous mechanical ventilation) on the intensive care ward,

the (“still vital”) innate immune system of this category of
donors has plenty of time to get activated to induce an acute
systemic autoinflammatory syndrome associated with the
maturation and activation of fully activated mature intra-
graft DCs which consequently are transplanted within the
inflamed organ to the recipient (for details, see below).

DCD donors suffer from prolonged warm ischemia times
during cardiac arrest associated with (time-dependent) an-
oxic/hypoxic damage to the donor organ that is aggravated
during postischemic reperfusion in the recipient. Of note,
while the organs are more ischemically damaged, the innate
immune system of this category of donors is not turned on
to get activated, that is, there is no systemic inflammation
and no activation of donor-derived DCs. This circumstance
may explain the observation that renal allografts removed
from DCD donors, despite an increased incidence of de-
layed graft function (DGF) of 73% compared with 27% in
DBD donor kidneys (469), show a similar rate of acute
rejection episodes as well as no differences in long-term
outcome when compared with kidneys from DBD donors
(358b, 606, 662). Likewise, liver and lung allografts re-
moved from DCD donors have also been demonstrated to
show results comparable to those with standard brain dead
donors (136, 324). DCD donors, as also extended criteria
donors, have been suggested to be more vulnerable to IRI
since donor kidneys suffer from prolonged warm ischemia
time, increased donor age, or comorbidity of the donor
(554).

As generally known, allografts from living donors do much
better than from DBD and DCD donors, generally appreci-
ated to be due to shorter cold ischemia times (484). In fact,
despite HLA disparity, the rejection and survival rates of
living unrelated renal transplants under modern immuno-
suppressive protocols are comparable to those of living re-
lated kidney allografts (94). Certainly, these transplants are
by far less damaged compared with DBD and DCD, and not
inflamed and without activated DCs compared with DBD.

In any case, during postischemic allograft reperfusion in the
recipient, two different innate immune systems, that of the
donor and that of the recipient, are activated, mounting an
intragraft sterile inflammatory response and leading to an
adaptive alloimmune response in the recipient. The key
event of this scenario refers to the activation of donor-
derived DCs already residing in the allograft (i.e., in DBD)
as well as recipient-derived DCs entering the donor organ
during reperfusion in the recipient. The aim in this section is
to analyze the various DAMPs that modulate donor- and
recipient-derived DC functions and explore how those
DAMPs may contribute to pathways leading to an adaptive
alloimmune response. Since ischemia/reperfusion-induced
injury associated with the emission of DAMPs is inescap-
able in solid organ transplantation and involves activation
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of DCs, studies on nontransplant IRI models will also be
included in this review.

In summary, the first injury to an allograft occurs already in
the organ donor. Here, we will highlight the development of
ROS-mediated oxidative stress under brain death condi-
tions because it is defined as an innate immunity-promoting
injury as demonstrated in both experimental models and
DBD donors. The default injury to an allograft may include
changes as ROS-mediated IRI in the recipient, highlighting
the importance of ferroptosis in this setting. Undoubtedly,
oxidative injury during postischemic reperfusion is a com-
plex scenario that includes but is not limited to disturbed
energy metabolism, cellular changes of the mitochondria
and cellular membranes, instigation of stress responses and,
as mentioned above, various forms of cell death, that is,
cellular pathologies which serve as critical sources of
DAMP emission.

1. Oxidative stress drives inflammation in brain dead
donors

A decade ago, early studies in rat suggested an influence the
dead or dying brain (BD) condition on allograft dysfunction
(517). In these experiments, long-term survival of brain-
dead donor isografts and allograft was shown to be signif-
icantly less compared with living donor grafts. In addition,
the transcription of cytokines was found to be markedly
increased in all brain-dead donor grafts. More recently pub-
lished evidence demonstrates donor BD to be inevitably
associated with loss of redox potential, including ER-stress
and ferroptosis-like cell death to be critical mediators of
innate immune system activation. Ultimately, by triggering
necroinflammation, such conditions might result in an
acute SIRS (68, 148, 319, 358, 417, 457, 575, 602). Necro-
inflammation, in a setting like this, may be associated with
the detection of a certain signature of necrotically dying
cells in the graft (68, 53, 370, 417, 508, 576, 603). In
particular, HMGB1 and HSP70 have been associated with
such conditions (15, 322, 555), but PRRs and their corre-
sponding machinery (90, 322, 550) as well as fragments of
the complement system (115) are likely to contribute. Fi-
nally, proinflammatory cytokines such as IL-1� and IL-18
(328, 358, 614) may indicate ongoing pyroptosis, and
CxCR1 (116)and IL-33 may represent a necroptotic re-
sponse. Cross-priming to mature DCs may consequently
follow during transplantation (450, 650). Interestingly, in
those studies on human splenic DCs, three conventional DC
subsets and one plasmacytoid DC subset were identified
(450).

2. Ischemia-reperfusion injury and the redox system

As mentioned at the beginning, the critical influence of isch-
emic injury on acute and chronic allograft rejection events
has been investigated for decades and was analyzed in an

early clinical trial for renal transplant recipients (338, 349,
350). In recent years, these findings have been confirmed by
others (499, 558, 613, 666, 677, 692). While a variety of
molecular mechanisms have been proposed to explain the
phenomenon of IRI, excess production of ROS continues to
receive most attention as a critical factor in the genesis of
this kind of oxidative injury. In fact, since the time of pub-
lication of the first clinical trial, production of ROS during
IRI has been confirmed in IRI models and human renal
allografts (167, 343, 350). In this scenario, ferroptosis is the
most likely reason for ROS production in IRI. It has been
widely accepted that vascular cells are at the edge of hy-
poxic injury and H2O2 and superoxide anion generation.
Within minutes after reperfusion, and upon reoxygenation
of the tissue, vascular ROS (vROS) may set the stage for the
disease to progress (280, 343, 344, 350, 612).

Infiltrating monocytes and macrophages, as well as neutro-
phils (nROS) that may be seen in the graft within minutes
following reperfusion, are thought to add further oxidation
events to the stressed tissue (78, 259, 280), ultimately re-
sulting in necroinflammation. In addition, nROS may reac-
tivate vascular cells which, in turn, produce vROS again, a
phenomenon originally described by researchers as the “vi-
cious circle” of IRI (433). ROS production is certainly not
limited to these two mechanisms, as the involvement of
changes in the electron transport chain (ETC), xanthine
oxidase (XO), nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidases (NOXes), and several others con-
tribute to the microenvironmental challenge (11, 34–36,
76, 96,138, 216, 228, 343, 344, 456, 530, 545, 549, 562,
642, 754). In conclusion, the seconds/minutes during re-
moval of organs from living or deceased donors as well as
the early phase of reperfusion by blood of the recipient
reflect a transient hypoxic state. Studies on a model of hy-
poxic reperfusion of the ischemic heart support this concept
by showing significantly higher ROS production in the
more hypoxic tissue, in contrast to lower ROS production
upon higher myocardial tissue oxygen tension (11). This
concept is summarized in FIGURE 8. This concept also takes
into consideration the many recent reviews on ROS in IRI
(216, 280, 343, 384, 549, 592, 686). The role of the DNA
damage response in this scenario may represent a conse-
quence of the loss of redox buffers (110, 111, 178, 298,
390, 404, 574, 591, 705, 717), and the loss of NADPH
abundance may decrease the threshold for several pathways
of regulated necrosis, including necroptosis and ferroptosis,
in this setting (280, 384, 385, 738). As cellular demise is
regulated by ER stress (106, 184, 248, 306, 329, 389, 634,
674, 738) in a balancing act with autophagy (8, 77, 280,
363, 369, 379, 425, 430, 523, 623, 631, 686), the complex-
ity of the regulation of necrosis during transplantation be-
comes obvious. However, it will be required to unreveal this
system in a much more complete manner to therapeutically
optimize the inevitable sensitization to acute allograft rejec-
tion and antibody-mediated rejection (see below).
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B. Oxidative Injury Induced Cross-Priming
and Its Contribution to
Necroinflammation

Antigen engulfment and processing by steady-state imma-
ture DCs (iDCs) and their subsequent DAMP-promoted,
PRR-triggered maturation into immunostimulatory DCs
able to prime naive CD4� T cells represents the key event of
oxidative injury-activated innate immunity as a trigger of
adaptive immunity. Innate alloimmunity mediating allo-
graft rejection is a unique immunological variant in that
priming of recipient alloreactive T cells with alloantigens is
provided by donor-derived and recipient-derived immuno-
stimulatory DCs via the direct, indirect, and semi-direct
pathway (direct, indirect, semi-direct allorecognition) (240,
343, 350, 598, 692).

The fundamental process of stress/injury-induced, DAMP/
PRR-mediated DC maturation in peripheral tissues is char-

acterized by a striking metamorphosis of these master anti-
gen-presenting cells. The large-scale changes include the
upregulation of the major histocompatibility complex
(MHC) and costimulatory proteins, initiating signal 1 and
signal 2, respectively. In addition, the secretion of Th1-
polarizing cytokines (signal 3) promotes naive CD4� T cells
to differentiate into IFN-�-secreting Th1 and secretion of
Th17-polarizing cytokines into IL-17-secreting Th17 cells.
Furthermore, migratory factors, such as C-C chemokine
receptor type 7 (CCR7), force DCs to migrate to the host’s
distal secondary lymphoid organs to present processed pep-
tidic antigens to naive T cells. Instruction by mature DCs
about antigens involved and the type of peripheral cell stress
and/or tissue injury enables naive T cells then to mount a
specific “tailor-made” adaptive immune responses (113,
343, 556, 665).

A crucial role of DAMPs in the generation of immunostimu-
latory DCs under various conditions of sterile inflammation
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including IRI has been reported (468). The role of DCs in
necroinflammation is depicted in FIGURES 9 AND 10. These
scenarios will be outlines for each DAMP class in the fol-
lowing. Compare TABLE 1 for an overview of the seven
classes DAMPs as defined in this article.

1. Class Ia/Ib DAMPs

Following recognition of class Ia DAMPs, PRRs on/in iDCs
such as TLRs trigger signaling pathways that directly pro-
mote the acquisition of their immunostimulatory properties
(16). Oxidative stress, for example, associated with IRI pro-
motes the emission of this class of DAMPs, a process that
can be regarded as the key event in converting iDCs to
mature DCs (FIGURE 10).

A key class Ia DAMP is nuclear HMGB1 that regulates
chromatin structure and gene transcription, while cytosolic
HMGB1 is involved in inflammasome activation and au-
tophagy. HMGB1 can be either actively secreted or exposed
by cells undergoing a life-threatening stress or released from
necrotic cells (343, 617, 639, 651). Once released in the

extracellular space, the protein can bind to PRRs such as
RAGE, TLR2, TLR4, and TLR9, thereby mediating and
promoting tissue inflammation. Convincing evidence has
shown that HMGB1 is generated in organs upon IRI includ-
ing human kidney allografts (435, 468, 605, 617, 624, 639,
720), but also emitted upon brain death (282, 322, 555,
702). In fact, it appears that oxidative stress is a central
regulator of HMGB1’s translocation, release, and activity
in sterile inflammation and cell death including necrosis,
apoptosis, autophagic cell death, and pyroptosis (720).

On the other hand, HMGB1 promotes DC maturation,
thereby promoting Th1 cell polarization (145, 146, 366,
416, 436, 707, 750). According to the data from these stud-
ies, HMGB1, mainly via recognition by its cognate receptor
RAGE, can be regarded as a strong immunostimulatory
DAMP for DC-mediated cross priming, necroinflamma-
tion, and subsequent T cell-mediated adaptive immunity.
Importantly, however, it is understood that HMGB1 by
itself, upon injection of the recombinant protein, is not
sufficient to initiate necroinflammation (Linkermann et al.,
unpublished observation).
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In addition to HMGB1, HSPs play a critical role as class Ia
DAMPs in the initiation of sterile inflammatory processes
including IRI-mediated inflammation. Thus numerous
studies on animal models but also in transplant patients
have shown upregulation of HSP expression, in particular,
HSP70, following ischemia and/or IRI but also under brain
death condition (15, 51, 161, 220, 342, 343, 350, 489, 512,
646b, 735). Similar to HMGB1 and as shown in other lines
of studies, HSP70 family members, via binding to TLR2
and TLR4, promote maturation of immunostimulatory
DCs able to elicit Th1 responses (21, 47, 157, 158, 272,
616). In addition, promoting TLR4-triggered DC matura-
tion, HSPs also contribute to mounting an adaptive immune
response by facilitating direct and cross-presentation of an-
tigens released from dying cells by DCs (748).

Class Ia DAMPs also refer to “self” nucleic acids present in
the cytosol where they are sensed by binding to PRRs in-
cluding TLR3, TLR9, NLRs, RLRs, and ALRs (234, 514a,
537, 599, 643). Nucleic acids may be released during IRI
via IRI-associated processes of apoptosis and necroptosis
(280, 384). Of importance with regards to mechanisms of
ICD-induced adaptive antitumor immunity (see below), the

DAMP dsRNA, recognized by TLR3 to trigger Toll IL-1
receptor (TIR) domain-containing (TRIF) signaling, has
been shown to be released during IRI (87).

Furthermore, nucleic acid-sensing receptors such as TLR3
and TLR9 have been shown to promote DC maturation
(249, 415) providing supportive evidence to the notion that
IRI-associated release of nucleic acids may also contribute
to DC maturation.

In addition, components of the damaged extracellular ma-
trix shown to be released during injuries including IRI (350)
can be included in the category of class Ia DAMPs. These
molecules include fragments of hyaluronan, heparan sul-
fate, and HS proteoglycan and were also demonstrated to
promote TLR4-triggered DC maturation (267, 463, 620).

It remains unclear whether the class Ib DAMP CALR emit-
ted during IRI-induced ER stress, oxidative stress, or as a
consequence of hypoxia/reoxygenation and exposed on the
cell surface contributes to DC maturation in these experi-
mental settings (184, 248, 306, 329, 389, 532, 609, 634,
670, 701, 737, 738). On the other hand, in another line of
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experiments in mice, a recombinant CALR fragment has
been shown to operate as a potent stimulatory agent to DC
maturation in a TLR4/CD14 and PI3K/Akt-dependent
pathway (372). Further experiments are needed to clarify
this topic.

2. Class II DAMPs

The close connection between innate immunity-induced in-
flammatory and subsequent adaptive immune responses led
to the debate whether or not activation of the inflam-
masome complex, including class II DAMP-induced activa-
tion of the NLRP3 inflammasome, provides instruction by
immunostimulatory DCs to the adaptive immune system in
a similar manner to other PRRs. To date, there is only
indirect and limited evidence in support of this notion (99,
388). Class II DAMPs appear to contribute to DC matura-
tion in a more indirect way by creating an inflammatory
milieu required for DCs to gain full immunostimulatory
properties. This may be partially mediated by the NLRP3
inflammasome and pyroptosis as a potent producer of
IL-1� (388, 556). Accordingly, class II DAMPs, in particu-
lar eATP but also MSU, alum, and cholesterol, are known
as non-pathogen-derived second signals for NLRP3 inflam-
masome activation promoting the creation of sterile tissue
inflammation (4, 30, 73, 151, 154, 212, 217, 226, 257, 308,
409, 542, 544, 645). Moreover, several studies indicate
ATP release from dying cells upon ischemic injury (254,
255). Along these lines, ATP appears to be implicated in
activation of the NLRP3 inflammasome (212, 257, 393,
560, 632, 668). Interestingly, a recent study on the hypoxia/
reoxygenation model found that eATP was able to induce
maturation of human monocyte-derived DCs (74).

A cautious synopsis of these findings gives rise to the as-
sumption that class II DAMPs such as eATP, via creation of
inflammasome-dependent inflammation, may contribute to
DC maturation. Nevertheless, studies on IRI models to
demonstrate a direct role of class II DAMPs in maturation
of DCs are still tenuous.

Interestingly, apart from studies on IRI models, earlier ex-
periments on the effects of alum on DCs in adaptive immu-
nity provided the first evidence suggesting that this DAMP
via induction of the DAMP uric acid contributes to DC
maturation, a finding at least pointing to a role of the
NLRP3 inflammasome in DC maturation (317, 585).

In view of the fact that eATP indirectly activates the NLRP3
inflammasome via promotion of ion perturbations (K� ef-
flux), recent studies are interestingly showing that ion efflux
and influenza infection trigger NLRP3 inflammasome sig-
naling in human DCs (166).

Finally, there is a recently reported study on graft versus
host disease (GvHD) in mice demonstrating that condition
therapy-induced class II DAMPs (uric acid) activate, as sec-

ond signals, the NLRP3 inflammasome, which subse-
quently promotes IL-1�-dependent activation of (donor)
DCs to elicit an allogeneic Th17 response leading to GvHD
(261).

3. Class III DAMPs

Class III DAMPs such as MICs and ULBPs (28, 70, 353,
459) on stressed cells activate NKG2D-expressing NK cells.
NK cells are important regulators of DC function during the
course of immune responses. In addition, NK cells shape
adaptive immune responses. They promote DC maturation
and influence the T-cell responses (164, 165). Mouse IRI
studies as well as murine in vitro cell culture models of
hypoxia/reoxygenation indicate a central role for oxidative
stress in the regulation of various NKG2D-binding class III
DAMPs (57, 88, 163, 237, 343, 398, 678). This hypothesis
may be underlined by data that have described NK cells
as an infiltrate of human transplants. Interestingly, this
occurs as soon as the organ is removed from brain-dead
donors (478, 572). In addition, one clinical analysis of
human kidney biopsies suggested the expression of MICB
before and after transplantation (526). Those results sug-
gested that NK cells may become activated via stress-induc-
ible DAMPs under brain death conditions. In addition, in
studies on tumor models, DNA damage response (DDR)
was shown to promote upregulation of class III DAMPs
(200, 331, 358a, 539, 601). Similarities between antitumor
immunity and alloimmunity obviously exist. Consequently,
DDR is involved in cellular responses to oxidative stress
and IRI (404, 705).

4. Class IV DAMPs

Class IV DAMPs can directly or indirectly contribute to DC
maturation via initial binding to natural IgM antibodies.
This process is followed by activation of the complement
cascade (52, 153, 584, 732, 733). In the scenario of exper-
imentally induced IRI, induction of complement activation
appears to use each of the three major pathways [classical,
mannose binding lectin (MBL), and alternative pathway]
depending on the experimental IRI model investigated, the
MBL pathway obviously playing a prevalent role, and the
alternative pathway mostly amplifying the cascade (23,
159, 343, 434, 581).

Once complement is triggered, the so-called membrane at-
tack complex (MAC, C5b-9) may result in regulated necro-
sis of the target cell (745). However, it is a matter of debate
if the MAC results in the formation of a pore in the plasma
membrane. Necrosis induced by complement may in fact
depend on internalization of the MAC (J. Pober, personal
communication). However, the plasma membrane rupture
is thought to release DAMPs of the classes I–III and thereby
promote necroinflammation (507, 721, 744). In addition,
complement cleavage products, such as C3a and C5a, may
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function as chemoattractants or may stimulate DCs directly
(368). Complement-mediated lysis, therefore, exhibits a
classical example of regulated necrosis that drives necroin-
flammation.

5. Class V DAMPs

As compared with class IV DAMPs, also class V DAMPs
stimulate DCs. ER stress and changes in redox homeostasis
may trigger DCs in addition to the DAMPs. If ER stress
occurs in the DCs themselves, it may accelerate DC matu-
ration given the involvement of the UPR sensors (397, 496,
740, 749). Other class V DAMPs may lead to functional
expression of other classes of DAMPs. Such a process may
upregulate the class Ia DAMP HSP70 by DCs in response to
heat. This may subsequently result in the upregulation of
costimulatory molecules, proinflammatory cytokines, and
T cell-mediated immune responses (314). There is also com-
pelling evidence that oxidative stress-associated IRI leads to
ER stress, thereby emitting class V DAMPs to initiate the
UPR (77, 106, 184, 248, 306, 329, 373, 389, 389, 448, 634,
674, 609, 738).

6. Class VI and class VII DAMPs

As mentioned above, succinate has also been shown to op-
erate as an extracellular DAMP when recognized by GPR91
(17, 117a, 208, 552). For example, DCs sense extracellular
succinate through this receptor and the increase in intracel-
lular Ca2� downstream of this event synergizes with TLR3
or TLR7 signaling to promote DC activation and their mi-
gratory ability (488, 552). These studies are conceptually
important because they illustrate that DCs have evolved to
integrate DAMPs emitted from stressed, damaged, or dying
cells with metabolic DAMPs to regulate immunogenicity, a
scenario that, along with others, also points to the mito-
chondria and NLRP3 machinery being closely interwoven
at multiple levels (718). Briefly, we believe that DAMPs that
are sensed by nociceptors should be mentioned as a class
VII. The classification of DAMPs is summarized in TABLE 1.
The authors of this review like to point out that a classifi-
cation of DAMPs may reflect a useful tool for the mecha-
nistic understanding and that other useful ways to classify
DAMPs may be discussed.

V. DAMP-INDUCED PATHWAYS
MEDIATING AN ANTI-TUMOR IMMUNE
RESPONSE

A. A Peculiar Type of Cell Death Induces
Anti-tumor Immunity

The concept of cancer immunosurveillance by the immune
system has been proposed more than five decades ago (63,
625). In brief, immunosurveillance proposes that precan-

cerous or cancerous cells when arising are sensed as “altered
(mutated) self” by antigen-presenting cells which instigate
an immune response to eliminate these malignant cells.
Originally based on poor evidence, the concept contin-
ued to gain increasing credibility given genetic and func-
tional methodological improvements. Today, an increas-
ing amount of data have been published in support of the
cancer immunosurveillance hypothesis. One such prom-
inent evidence refers to a particular kind of an injury to
cancer cells denoted as “immunogenic cell death” (ICD)
in terms of a certain functionally peculiar type of RCD that
is induced by certain antineoplastic therapies. Of note, ICD
is associated with the generation and emission of DAMPs
that have been shown to induce specific antitumor immu-
nity. In fact, there is now convincing preclinical and accu-
mulating clinical evidence in support of the notion that
successful use of antineoplastic agents involves the immune
system (321, 752). In addition, recent data on the role of
DAMP-activated NKG2D-bearing NK cells in antitumor
immunity have added another level of direct support to the
immunosurveillance concept. We will address this scenario
in more details in the following sections.

B. Role of DAMPs in Immunogenic Cell
Death

1. Immunogenic cell death

Grounded on the danger/injury model, a conceptual revo-
lution in oncology has occurred in that tumors are consid-
ered to be entities that can be detected and efficiently elim-
inated by the immune system under certain circumstances.
The quintessence of this new concept specifically refers to
the phenomenon of ICD (192). However, only a few lethal
stimuli may directly trigger ICD including certain chemother-
apeutics (e.g., anthracyclines), oxaliplatin, UVC radiation and
radiotherapy, certain oncolytic viruses [e.g., Newcastle disease
virus (NDV)], high hydrostatic pressure, photodynamic ther-
apy (PDT) (e.g., hypericin-PDT), and RIG-I-like helicases li-
gand (192). These are called “ICD inducers” (188). Their
precise mode of action is not quite clear, but there is accu-
mulating evidence indicating that these therapeutic induc-
ers cause ICD, at any rate, through ER stress associated
with or induced by ROS (193).

In the current era in which cancer immunotherapy has
grown to be the most promising new cancer treatment ap-
proach since the development of the first chemotherapies in
the late 1940s, the use of ICD inducers offers a significant
additional therapeutic quality, especially in combination
with immune checkpoint therapy (203, 446). This concept
has already been endorsed in an experimental setting using
clinically relevant genetic mouse models. In this study, a
combination of selected clinically approved immunogenic
chemotherapeutics triggering CD8� T-cell infiltration into
tumors was shown to make unresponsive tumors sensitive
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to checkpoint blockade therapy. Interestingly, this drug-
induced antitumor T-cell response was associated with an
upregulation of TLR4 on a distinct subset of tumor-infil-
trating DCs, presumably activated by HMGB1 released
from dying tumor cells in this model (509). Certainly, these
data are promising and open the door to new perspectives in
expanding the proportion of patients being responsive to
current anticancer immunotherapy, yet concerns about
overactivated autoimmunity under such a treatment are ex-
pected.

As typically demonstrated in targeted experiments, ICD is
associated with emission of a series of DAMPs that develop
in a precise spatiotemporally defined configuration. This
coordinated emission of DAMPs then triggers a robust anti-
tumor immune response that is associated with the estab-
lishment of an immunological memory. The efficient estab-
lishment of a specific adaptive response against tumor-as-
sociated antigens (TAAs) in the context of ICD relies on the
activation of DCs by DAMPs. DCs can encounter tumor
cells either through infiltrating tumors (401) or at distant
sites when tumor cells that have detached from the tumor
mass enter the blood circulation to facilitate their spread to
distant locations in the body (689). In fact, studies on the
pivotal involvement of DCs employed genetic mouse mod-
els and human monocyte-derived DCs (224, 752). Consid-
ering the human in vivo situation, recent exploration of the
effect of platinum-induced ICD (associated with emission
of CALR, ATP, and HMGB1) suggested platinum treat-
ment to drive tumor cell phagocytosis. This appeared to be
largely mediated by CD1c� DCs (124b).

Notably, characteristic for the action of DAMPs in this
scenario is that, in addition to promoting immunity, they
break, in parallel, the existing tumor-driven environmental
immunosuppressive “milieu” reflecting “tumor toleroge-
nicity.” This “suppressive” tumor environment is estab-
lished in the absence of DAMPs but presence of “tolerogenic”
cells including but not limited to CD4� CD25� Foxp3� Tregs
and myeloid-derived suppressor cells (MDSCs) (192, 301,
302, 321, 451, 524, 687).

ICD is associated with cellular stress, such as ER stress and
lipid peroxidation, that precede the emission of DAMPs to
an earlier time point than plasma membrane rupture and
necrosis. As recently reviewed (348), these stress responses
include ROS↔ER stress-induced UPR (at least in general)
and certain innate immune defense processes such as au-
tophagy (189, 192, 196, 301, 302, 321). From the perspec-
tive of this article, ROS production and the ER stress as well
as UPR-triggered autophagic mechanisms deserve special
attention because, as reviewed in Reference 348, they are
also involved in models of IRI (77, 106, 118, 184, 248, 280,
306, 329, 343, 369, 379, 389, 430, 609, 623, 631, 634,
674, 686) and, thus, may represent a mechanistic link be-
tween allograft and tumor rejection.

2. Emission of class Ia/b, class II, and class V
DAMPs by cells succumbing to immunogenic cell
death

According to recently published consensus guidelines (302),
the phenomenon of ICD is associated with the emission of
class Ia/Ib, class II, and class V DAMPs. Thus increasing
evidence from studies on models of ICD have shown that
the triggering of a pre-mortem ER stress in the dying cancer
cell is a crucial capacity of ICD-inducing antineoplastic
agents to induce an efficient anti-tumor immune response
against TAAs (189, 196, 321). This joint induction of ER
stress and loss of redox capacity reflects the emission of
class V DAMPs that are perceived by the PERK sensor to
elicit, at least in some models, an UPR in the scenario of ICD
(241, 548, 573). Experiments with various ICD-inducing
antineoplastic agents have shown that ER stress, either ac-
companied or induced by ROS production in terms of class
V DAMPs, are typical features of ICD and seem to be in-
dispensable for subsequent induction of further classes of
DAMPs, although their exact molecular cooperation and
interaction in efficiently inducing subsequent danger signal-
ing is still elusive (187, 189, 196, 299, 300, 661). Neverthe-
less, current evidence indicates that ROS overproduction at
the ER leads to the highest degree of ER-associated proteo-
toxicity that translates into the generation of danger signal-
ing pathways in a PERK-dependent manner (187).

Two ER stress-induced key DAMPs, namely, CALR, and
eATP, sequentially emitted at different phases of the apo-
ptotic process, have been identified, together with release of
HMGB1 and secretion of type I IFN, to be crucial for cancer
immunogenicity via activation of tumor-infiltrating DCs
(187, 189, 192, 196, 301, 302, 321). FIGURE 11 exemplifies
how these DAMPs are thought to contribute to the concept
of necrosinflammation.

A) ER STRESS AND CALR EXPOSURE. In the preapoptotic phase,
ICD-inducing therapeutics mobilize ER chaperone CALR
to traffic towards the cell surface where it docks on the
CD91 on target cells and interacts with the same receptor
on DCs. Of note, CALR surface exposure can also be in-
duced in prenecroptotic cells, in the context of NDV-in-
duced ICD (315). The exact translocation pathway to the
cell surface has been found to be highly inducer-dependent
as demonstrated by a series of studies (192). Trafficking of
CALR has been found to be especially mediated by PERK.
This includes an interaction with the phosphorylation of
eukaryotic initiation factor 2� (eIF2�). Chemotherapy-in-
duced CALR exposure pathway tends to be much more
complex and multi-factorial compared with Hyp-PDT-in-
duced CALR exposure pathway. The latter is thus far the
simplest and most rapid molecular pathway for CALR ex-
posure described in the ICD literature (195). On the other
hand, ER stress-induced autophagy in the case of Hyp-PDT
induced ICD tends to suppress CALR surface exposure
(190). Moreover, there is compelling evidence suggesting a
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crucial and obligatory role of posttranslational modifica-
tions occurring in the course of an UPR. Upon binding to
the scavenger receptor CD91, CALR delivers a major
phagocytic signal to DCs, thereby improving their capacity
to take up dead cell-associated antigens as an important first
step to gain full immunostimulatory capacities (32, 142,
189, 195, 207, 300, 326, 501, 502, 661, 683, 688). More-
over, low endogenous CALR levels may translate into low
CALR surface exposure that can in turn be responsible for
an important resistance mechanism against anticancer im-
munotherapy (191).

B) SECRETION OF EXTRACELLULAR ATP. During the blebbing phase
(for chemotherapy) or preapoptotic phase (for Hyp-PDT)
of apoptosis, a class II DAMP, namely, ATP, is secreted to
the extracellular space via a yet undefined mechanism (195,
301, 424, 673). ATP secretion, like CALR exposure, tends

to be mediated through various signaling pathways in an
ICD-inducer-dependent fashion (197). For instance, Hyp-
PDT-induced ATP secretion is elicited by a PERK-mediated
ER stress pathway culminating into a secretory pathway-
based ATP liberation (195). Moreover, this ER-to-extracel-
lular space transport of ATP is not affected by the au-
tophagic machinery (190).

Caspase-mediated opening of pannexin 1 channels may be
involved in the secretion of ATP (83, 301, 424, 673). In
addition, ATP secretion by cells exposed to chemotherapeu-
tic-ICD inducers was found to require an intact autophagic
machinery (25, 187, 363, 374, 423, 443).

ATP, after secretion, promotes the differentiation of freshly
recruited immune cells, for example, into tumor-infiltrating
DCs. This effect may involve the purinergic receptor P2RY2
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FIGURE 11. The concept of DAMP-mediated necroinflammation. Simplified scenario model of therapy-
induced immunogenic cell death (ICD) associated with the spatiotemporally defined emission of DAMPs (CALR,
ATP, HMGB1) and secretion of type I interferons (type I IFNs). These three DAMPs together with type I IFNs
define the immunogenicity of ICD by facilitating tumor antigen uptake by immature dendritic cells (iDC) and
promoting upregulation of immunostimulatory capacities of mature dendritic cells (mDC) to activate CD4� and
CD8� T cells thereby eliciting an anti-tumor immune response. Note: the figure is primarily sketched on the
basis of data from studies on immunogenic cell death of cancer cells; the fade-in of the clue to a possible role
of ischemia reperfusion injury in such a scenario (leading to an alloimmune response) is purely speculative,
though based on data from other lines of studies on models of postischemic reperfusion injury. Ag, (tumor-
associated) antigen; CALR, calreticulin; CXCL10, chemokine (C-X-C motif) ligand 10; CXCR3, CXC chemokine
receptor 3; DAMP, damage-associated molecular pattern; dsRNA, double-stranded RNA; ER, endoplasmic
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(152, 193, 194, 401, 402, 430). Moreover, eATP, primarily
acting through P2RX7 during ICD, promotes the activation
of the DC-based NLRP3 inflammasome, hence stimulating
IL-18 and IL-1� processing. Upon release, IL-17-producing
�� T cells and priming of CD8� T cells against tumor anti-
gens may occur (24, 30, 32, 73, 83, 129, 154, 189, 204,
207, 212, 326, 374, 401, 402, 423, 443, 444, 542, 673,
683). Of note, in some contexts, P2X7 receptor activation
may not have synergistic immunogenic effects but rather
more potentiating ones, during ICD (194). Additionally,
ATP was found to act also when released by plasma mem-
brane rupture DAMP in the late apoptotic/necrotic phase of
tumor cell death (192).

C) RELEASE OF HMGB1. This class Ia DAMP strongly mediates
anti-tumor immune responses via chemotherapy-induced
ICD. During the post-mortem phase, HMGB1, in a special
redox modification and operating as a DAMP, is released
upon both the nuclear and plasma membrane permeabili-
zation from tumor cells succumbing to ICD into the extra-
cellular space (13, 627). In addition to mediating inflamma-
tion, HMGB1 was published to be involved in the progres-
sion of autophagic flux, and as a proposed mechanism,
beclin 1 (BECN1) and B cell CLL/lymphoma 2 (BCL2) may
be involved (13, 189, 192, 284, 301, 617, 627, 639). This
class Ia DAMP, recognized by TLR4, has been shown to
assist in effective cross-presentation of tumor-associated
antigens, to promote upregulation of their costimulatory
molecules, to increase intracellular levels of pro-IL-1�, and
to support the secretion of type I IFNs which, at least in

some test models, are also required for ICD (13, 321, 330,
594, 751, 752). HMGB1 was shown to act also as an ac-
tively secreted DAMP in the early apoptotic phase, al-
though not in an ICD context per se (192). Interestingly, in
a manner similar to HMGB1’s activity in cardiac allograft-
ing (see above), it was recently reported that also in case of
cancer (more specifically glioblastoma), HMGB1-driven
anticancer vaccination effect in vivo was strongly associ-
ated with increased intratumoral infiltration of Th17 cells
apart from Th1 and cytotoxic CD8� T cells (198).

D) SECRETION OF TYPE I INTERFERONS. Finally, cancer cells release
type I interferons (IFNs) upon anthracycline stimulation. In
addition to immunostimulatory effects, type I IFNs, via au-
tocrine and/or paracrine signaling, promote secretion of the
chemokine CXCL10 which is proposed to recruit DCs to
the tumor site (594, 751). TLR3 is activated by its agonist,
the DAMP dsRNA (294) probably released during anthra-
cycline-induced ICD. In a similar manner, genotoxic stress
in cancer cells has been found to trigger formation of en-
dogenous noncoding RNAs which, via recognition by
RIG-I, and innate immune receptorhat facilitates type I IFN
responses (FIGURE 12) (535).

E) HEAT SHOCK PROTEINS AND DNA. HSP70 and HSP90 instigate a
specific cellular anti-tumor response via contribution to
maturation of iDCs into immunogenic DCs, thereby pro-
moting presentation and cross-presentation of tumor-asso-
ciated antigens (TAAs). As plasma membrane receptors on
DCs, the scavenger receptor CD91 and TLR4 have been
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shown to be involved (91,100, 156, 162, 470, 582). For
example, HSP70 was shown to be the most important com-
ponent, followed by CALR and HMGB, in facilitating DC
immunity, which suppresses metastases of mouse 4 T1
mammary tumors and prolongs survival of test mice (100,
192, 197, 318, 378, 611, 753). Other lines of recent studies
on murine tumor models provided the first evidence sug-
gesting that STING/IRF3 pathway-mediated recognition of
DNA of tumor cells by DCs promotes anti-tumor immune
responses that are associated with type I IFN secretion and
priming of CD8� T cells (312, 691).

In summary, the current ICD concept in oncoimmunology
holds that the spatiotemporally orchestrated emission of
DAMPs, when bound to/sensed by their cognate receptors,
together with secretion of type I IFNs, promote 1) the re-
cruitment of DCs to sites of ongoing ICD, 2) their capacity
to engulf necrotic debris, 3) their efficient cross-presenta-
tion of TAAs, and 4) their metamorphosis into immuno-
stimulatory APCs that are able to instigate and maintain an
adaptive anti-tumor CD4�/CD8� T-cell immune response
(143, 321, 635, 752).

Current notions in oncoimmunological research further
hold that these efferent immune processes proceed in two
phases, involving the sequential recruitment and IL-1�-de-
pendent activation of IL-17-secreting �� T cells. This is
associated with increased proliferation of CD4� and cyto-
toxic CD8� T cells (403, 427, 752). T-cell immunity results
in a number of anti-tumorigenic processes such as anti-
neoplastic effects mediated by secretion of IFN-� and the
granzyme-perforin pathway. In addition, these processes
lead to the establishment of a protective immunological
memory (52, 192, 201, 301, 403, 427, 752).

C. Class III DAMPs in Immunological Tumor
Surveillance

Apart from their role in ICD-induced anti-tumor immunity
reflecting a strong principle of potential immune surveil-
lance, DAMPs are reportedly involved in another concept
of cancer prevention as a primary function of the immune
system. This concept is based on recent knowledge holding
that lymphocytes such as NK cells and �� T cells are able to
recognize and eliminate stressed premalignant cells (418).
This process is initiated by the exposure of class III DAMPs
on stressed cancer cells such as MICs and UFLBPs. As re-
cently reviewed in more detail (348), class III DAMPs are
expressed in many human tumors, including melanoma,
leukemia, myeloma, glioma, and carcinomas of the pros-
tate, breast, lung, and colon (418, 539). As mentioned
above, these stress-induced molecules are recognized by the
germline-encoded activating receptor NKG2D that is ex-
pressed by almost all NK cells, �� T cells, NKT cells, certain
CD8� T cells, and CD4� T cells. Remarkably, NK cells,
mostly in cooperation with NKT cells and �� T cells, have

been shown to lyse tumor cells. In fact, accumulating evi-
dence shows that the expression of NKG2D is crucial for
tumor cell elimination both in vitro and in tumor transplan-
tation experiments in vivo (353, 418, 459, 539). Moreover,
class III DAMP-activated NK cells are potent producers of
numerous cytokines. IFN-�, in particular, is thought to
have powerful anti-tumor activities, such as inducing MHC
class I expression and sensitizing tumor cells to CD8� T cell
killing (418). In addition, activated NK cells, via direct cell
contact and secretion of cytokines (INF-�, TNF-�) have
been shown in many (though not all) studies to assist in
maturation of immunostimulatory DCs in tumors thereby
contributing to antitumor immunity (compare FIGURES 8
AND 9) (645a, 747).

As also reviewed (348), accumulating evidence suggests
that the expression of class III DAMPs is regulated by var-
ious stress pathways, in particular, by the DDR, a stress
response that plays an important role in the immune sur-
veillance of cancer (98, 258). In fact, the DDR is constitu-
tively activated in many human cancers as a consequence of
oncogene-induced “replication stress” (418, 539). Mecha-
nisms involved in this scenario are not well characterized,
but it is proposed that damage to DNA leads to the presence
of cytosolic DNA that binds to and activates STING-depen-
dent-DNA sensor pathways, which induce the expression of
class III DAMPs (200, 229, 358a).

Certainly, with regard to the scenario of ICD-induced anti-
tumor immunity mentioned above, whether or not the path-
way of DDR ¡ class III DAMPs ¡ anti-tumor immunity
contributes to the eradication of neoplastic cells responding
to chemoradiotherapy in vivo remains to be elucidated. In
particular, the issue of whether or not NKG2D–expressing
�� T cells, known to operate in the context of ICD-induced
antitumor immunity, may be activated by ICD-induced
class III DAMPs remains elusive.

VI. A MODEL FOR THE IMMUNOLOGICAL
HIERARCHY OF REGULATED CELL
DEATH PATHWAYS

The understanding of 1) the molecular machinery of the
signaling pathways of regulated necrosis including specifi-
cally released DAMPs and 2) the specific character of
DAMPs allows to predict effects of RCD on the immune
system (FIGURE 13). Apoptosis clearly is not associated with
systemic inflammation because of several factors that inde-
pendently escape immune recognition. First, and most im-
portantly, during apoptosis, DAMPs are not released given
the maintenance of the plasma membrane integrity. In ad-
dition, exposure of phosphatidylserine functions as an
eat-me signal for apoptotic cells, a process that does not
allow cell death to proceed to secondary necrosis (as seen in
vitro after several hours). Apoptosis, therefore, is the ideal
pathway to maintain metabolic cellular turnover and cellu-
lar turnover that is required during development.
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Viral infections are classically cleared by induction of apo-
ptosis in infected cells. Obviously, systemic infection is not
a favorable condition to defend viruses. However, upon
viral expression of caspase inhibitors, it takes necroptosis to
control the virus. In this scenario, DAMPs are being re-
leased, but in parallel anti-inflammatory cytokines are pro-
duced. Therefore, necroptosis contains “anti-inflamma-
tory” components. Examples are IL-33, which stabilizes
regulatory T cells in the microenvironment, and CXCL1,
which directly inhibits natural killer cells.

As far as we understand the pathway of ferroptosis while
this review was written, no modifications of the immune
system by cells that die by ferroptosis have been described.
Therefore, this RN pathway appears to represent an exam-
ple of DAMP release by plasma membrane rupture in the
prototypic sense.

Some conditions require more involvement of the im-
mune system than simply releasing DAMPs. Whenever
cells die by pyroptosis, long-lasting proinflammatory cy-
tokines are actively matured by the same machinery that
cleaves gasdermin D. IL-1� and IL-18 reach high intra-
cellular concentrations before plasma membrane rupture
finally releases these factors. The consequences to the
organism are systemic inflammation, acute phase re-
sponse, and fever.

Lastly, the subroutine of regulated cell death, through the
specific release of defined DAMPs, determines the regener-
ative response in an organ specific manner.

VII. ROLE OF DAMPs IN REGENERATION
FOLLOWING NECROTIC INJURY

A. General Aspects on Regeneration
Following Necrotic Injury

A possible role of DAMPs in regeneration was already men-
tioned in the 2003 article where these molecules were de-
scribed for the first time. Land (336) proposed: “Like the
insult of ischemia-reperfusion, other risk factors have been
implicated in long-term renal allograft dysfunction. . . .
Each of these may cause induction of HSPs that interact
with TLRs on donor vascular cells. . . . An inflammatory
milieu is created in the arterial wall that results in subinti-
mal differentiation and proliferation of smooth muscle
cells, as well as in the induction of fibrogenic processes.”
Today it has become clear that regeneration following cell/
tissue injury is a classical intrinsic process of the innate
immune system where numerous DAMP-activated PRR-
bearing cells instigate, modulate, and orchestrate repairing
pathways in a sequence of steps by promoting cellular cross-
talk and secretion of signaling molecules, including cyto-
kines, chemokines, and growth factors.

A variety of hematopoietic and nonhematopoietic cells of
the innate immune system are regarded as the key regulators
of tissue repair and regeneration (696). These PRR-bearing
cells include mobile inflammatory monocytes and tissue-
resident macrophages (432, 608, 697) as well as fibroblasts/
myofibroblasts (3117, 313, 442), vascular cells including
bone marrow-derived endothelial progenitor cells (233,
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In ferroptosis, no modulation of the im-
mune system has been described so far
apart from the release of DAMPs in con-
trast to necroptosis, during which IL-33
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SARHAN ET AL.

756 Physiol Rev • VOL 98 • APRIL 2018 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (157.139.021.001) on February 22, 2018.

Copyright © 2018 American Physiological Society. All rights reserved.



522, 557, 675), epithelial cells such as keratinocytes (515)
and tubular cells (231), hepatic stellate cells (681), and, last
but not least, stem cells, particularly mesenchymal stem
cells (MSCs) (123, 253).

Once activated, all these members of the large family of
innate immune cells become involved in resolving inflam-
mation, repairing damaged tissue immediately after tissue
damage. Theoretically, all these cells expressing PRRs may
be activated by DAMPs and, indeed, for some of them, this
has already been shown. Orchestrating the first step of
regeneration, the highly organized phagocyte-mediated
resolution of innate immune inflammation, DAMPs drive
the mechanism of efferocytosis as critical processes in
efficient clearance of cellular debris and dead cells by
phagocytes (14).

Another example refers to the observation that the DAMP
fibronectin extra domain A, through TLR signaling, is a
potent stimulus for collagen production, myofibroblast dif-
ferentiation, and wound healing in vitro (49). Further ex-
amples point to the role of HMGB1 in the differentiation of
lung fibroblasts into myofibroblasts and enhanced cell mi-
gration (359) to promote 3T3 fibroblast wound healing by
inducing cell proliferation and migration (536), to enhance
proliferation of pulmonary arterial smooth muscle cells and
human arterial endothelial cells (722), and to activate fibro-
genic hepatic stellate cells in vitro (286).

Moreover, DAMPs were found to activate circulating bone
marrow-derived stromal stem cells which facilitate the re-
pair processes. Thus DAMPs were demonstrated to pro-
mote both proliferation and trafficking of MSCs, identify-
ing HMGB1 as a key factor in the regulation of these pro-
cesses (395, 511, 520). Other DAMPs, namely 100A4
proteins and uric acid, have dose-dependently been shown
to induce chemotaxis of MSCs with synergistic effects when
combined (149). In this context, it is worth mentioning the
process of autophagy that plays an essential role in regulat-
ing cell viability during tissue repair (140). Once again,
autophagy is triggered and regulated by DAMPs (243, 367).

Together, there is increasing evidence indicating a crucial
role for DAMPs in repair and regeneration. Since HMGB1
and eATP represent the most investigated DAMPs in this
blooming field of regeneration mechanisms [as also re-
viewed elsewhere (651)], some more details are added in the
following by focusing on the key events of fibrogenesis,
angiogenesis, and reepithelialization.

B. Involvement of HMGB1 in Regeneration

In addition to its promotion of MSCs migration and prolif-
eration (395, 511, 520), HMGB1, in studies on skin graft-
ing, was shown to operate as a chemoattractant by inducing
accumulation of bone marrow-derived epithelial progeni-

tors in skin grafts, promoting inflammatory suppression in
the grafts, and subsequent epithelial tissue regeneration
(615).

Novel insights were gained from the role of DAMP-pro-
moted inflammatory response in myocardial injury, repair,
and remodeling (173). For example, in studies on a model
of acute myocardial infarction in transgenic mice exhibiting
the cardiac-specific overexpression of HMGB1 in cardio-
myocytes or local administration of HMGB1 provided first
in vivo evidence that this DAMP induces myocardial regen-
eration by enhancing angiogenesis, restoring cardiac func-
tion and improving survival after myocardial infarction
(311).

In such studies, murine necrotic myocardial cells and
DAMP release, including HMGB1, galectin-3, S100�,
S100A8, and S100A9, were shown to trigger a significant
increase in fibroblast proliferation, �-smooth muscle actin
activation, and collagen 1A1 and 3A1 mRNA expression
and to significantly increase fibroblast motility in a cell-
wounding assay in a TLR4- and RAGE-dependent manner
(736). The profibrogenic role of HMGB1 could also be
demonstrated in a study on a model of liver fibrogenesis
(287). These experiments suggest that HMGB1 dose-de-
pendently stimulates proliferation of hepatic stellate cells,
upregulated de novo synthesis of collagen type I and
�-smooth muscle actin, and triggered Smad2 phosphoryla-
tion and its nuclear translocation through a transforming
growth factor (TGF)-�1-independent mechanism.

In addition to contributing to fibrogenesis, HMGB1 was
found to promote angiogenesis. As previously reviewed
(708), numerous studies have identified HMGB1 as a criti-
cal proangiogenic factor (82, 449) that may potently stim-
ulate endothelial cells (645b), especially upon hypoxic con-
ditions (66). Accordingly, a recent report, again from stud-
ies on transgenic mice, shows that heart-specific HMGB1
expression promotes angiogenesis and may reduce the size
of myocardial infarction by directly affecting cells from
bone marrow (475). Recent experiments also provided ev-
idence for a role of HMGB1 in renal tissue regeneration. As
also demonstrated in studies on prostate tumor cells (742),
HMGB1 induces activation of the chaperone-like protein
clusterin (Clu) that in other sets of studies on Clu knockout
mice was shown to be required for renal tissue regeneration
in the kidney repair phase after IRI, associated with promo-
tion of tubular cell proliferation (483) and fibrogenesis
(219).

C. Involvement of ATP and Other
Nucleotides in Regeneration

There is increasing evidence suggesting that nucleotides,
acting as “hybrid DAMPs” ( class Ib/ II DAMPs), actively
participate in the three phases of regeneration. The direct
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binding to purinergic receptors contributes to this phenom-
enon, especially the involvement in resolution of inflamma-
tion, proliferation of cells, and reepithelialization processes.
Two families of P2Rs appear to function in a distinct man-
ner: P2XRs are involved in defense mechanisms and cell
death, whereas P2YRs participate in regeneration in re-
sponse to wounding (254). For example, ATP/UTP released
from apoptotic and pyroptotic cells may act as “find-me”
signals for macrophages via P2Y2R (152). Human neutro-
phils, also involved in the resolution phase, were found to
release ATP that in turn guides their chemotaxis by feed-
back through P2Y2 receptors (93). In addition, activation
of P2Y2 receptor leads to the actin-binding protein filamin
A that participates in the anchoring of membrane proteins
for the actin cytoskeleton (719). Furthermore, stimulation
of P2YRs by nucleotides revealed mitogenic effects on car-
diac endothelial cells (563) and fibroblasts (264). More-
over, as recently reported, uridine adenosine tetraphos-
phate, a dinucleotide, may function as a proangiogenic fac-
tor (746). Taken together, these findings provide evidence
for a role of nucleotides as pro-angiogenic DAMPs in tissue
repair and angiogenesis.

Nucleotide release during acute renal failure was found to
promote tubular cell proliferation (473). Along similar
lines, hepatic ATP promotes liver regeneration (214). A
more recent report provided evidence for an early release by
degenerating neurons of ATP that contributes to the activa-
tion of a series of intracellular pathways within Schwann
cells that are crucial for nerve regeneration (Ca2�, cAMP,
ERK1/2, and CREB) (479). As concluded by the authors,
these results contribute to define the cross-talk taking place
among degenerating nerve terminals and perisynaptic
Schwann cells, involved in the functional recovery of the
neuromuscular junctions.

ATP acting as a class II DAMP may also contribute to tissue
repair via profibrotic pathways mediated by the activation
of the NLRP3 inflammasome (see above). Indeed, studies
on fibroblasts and different organs have demonstrated that
the innate immune sensor NLRP3, mostly inflammasome
dependent (18, 292) but also inflammasome independent
(672), plays a crucial role in fibrogenesis and can orches-
trate profibrotic innate immune responses under both infec-
tious and sterile conditions. In fact, a large body of evidence
suggests that the key products of the NLRP3 inflam-
masome, IL-1� and IL-18, exert profibrotic activities, prob-
ably secondary to pyroptosis (58, 81, 171, 199, 544). On
the other hand, these reports are not without conflicts. For
example, more recent studies on lung and dermal fibro-
blasts resulted in the conflicting observation that IL-1� at-
tenuates myofibroblast formation and extracellular matrix
production in fibroblasts exposed to TGF-�1 (439). Ac-
cording to the authors’ conclusion, these findings should
give rise to reconsideration of the role of IL-1� in fibrosis.
Thus, to date, the signaling pathways from the inflam-

masome to myofibroblast differentiation and chronic colla-
gen synthesis have not been fully elucidated and await fur-
ther clarification (19). It is clear, however, that eATP, when
activating P2X7 receptors, promotes inflammation and fi-
brosis, likely as a consequence of inflammation rather than
primary fibrosis (543).

D. Conclusions

In conclusion, HMGB1 released by injured cells enhances
tissue repair by promoting fibrogenesis, angiogenesis, and
reepithelialization. In fact, to denote HMGB1 as a proto-
typic DAMP responsible for regeneration may alone be al-
ready supported by the observation that nonprofessional
marathon running leads to an immediate rise in HMGB1
serum concentrations which return to baseline levels during
a recovery week (40).

VIII. PERSPECTIVES FOR CANCER AND
TRANSPLANT SCIENTISTS

A. Perspectives for Oncologists

While DAMPs are still living in the shadow in transplant
medicine, they have already reached clinical reality in on-
cology. Growing evidence indicates that expression of
DAMPs may have a prognostic or predictive value for can-
cer patients (177). For example, high CALR levels in ma-
lignant cells have been correlated with favorable disease
outcome in neuroblastoma patients, pointing to a novel
independent prognostic factor (246). Similar results were
obtained in lung cancer and ovarian cancer patients treated
with ICD inducers such as radiotherapy and paclitaxel, re-
spectively (191). In addition, elevated levels of HSP90 and
CALR on the surface of neoplastic cells were shown to be
associated with clinical responses among patients with in-
dolent non-Hodgkin’s lymphoma recurrence treated with
an autologous cancer cell-based vaccine (727). Further-
more, increased concentrations of soluble HSP90 have been
detected in the serum of colorectal cancer patients as com-
pared with healthy individuals. The appearance of this
DAMP in its soluble form activates cancer cell-intrinsic sig-
naling pathways that promote disease progression (89, 92).
Clinical data have shown total CALR levels to be positively
associated with accelerated disease progression and poor
outcome in gastric cancer patients (86), women with breast
carcinoma upon surgery (155), neuroblastoma, bladder
carcinoma, and non-Hodgkin’s lymphoma patients, irre-
spective of treatment type (80). In the field of future ICD/
DAMPs-based therapeutic anticancer strategies, identifying
novel ICD inducers as well as measures that convert non-
immunogenic RCD into bona fide ICD is of utmost primor-
dial importance. Indeed, preliminary clinical findings have
provided promising evidence that agents that promote
emission of CALR, ATP, and HMGB1 as well as secretion
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of type I IFN may considerably improve the clinical profile
of conventional therapeutic regimens (48). The final goal
here is to detect and develop novel therapeutic regimens, for
example, using certain combinational approaches, that trig-
ger ICD in a way able to destroy every tumor in every
patient. Speculatively, particular cycles of chemotherapy
could target specific forms of RCD as ICD, thus addition-
ally preventing resistances to treatment.

B. Perspectives for Transplantologists

The discovery made by oncoimmunologists that a given
injury must initially induce an oxidative/ER stress response
that proceeds to subsequent spatiotemporally coordinated
emission of distinct DAMPs in the course of RCD to elicit a
robust anti-tumor immune response is of outmost impor-
tance for transplantologists. Of note, from the perspective
of this review, a large body of evidence now emphasizes that
the “head of the snake” to induce adaptive immunity has to
be seen in the action of ROS which in both scenarios, IRI-
induced allograft rejection and ICD inducer-promoted tu-
mor rejection, operate at the front line. Moreover, since
these oncoimmunological observations are reminiscent of
similar stress responses and ways of DAMP emissions as
those found in experimental and clinical settings of IRI, a
paramount question needs to be addressed: Is there a uni-
versal principle underlying all injury-induced stress re-
sponses? If necroinflammation was to define the innate and
adaptive immune responses through a specific DAMP sig-
nature, this could explain the hierarchically and spatiotem-
porally orchestrated “collaboration axis” between various
classes of DAMPs. Such signatures would fine-tune an
adaptive immune response against dead cell-associated an-
tigens. This question and other recent contributions from
oncoimmunologists to the concept of injury-induced immu-
nity may encourage transplant researchers to redesign ex-
perimental and clinical studies dedicated to this paradigm
shift in immunology. It is possible that such findings from
work in the field of oncoimmunology will stimulate re-
search on mechanisms of injury-induced allograft rejection.
For example, transplant immunologists can promote exper-
iments on allograft IRI or donor brain death models aimed
at exploring distinct initial stress responses and peculiar
ways of intragraft cell death. This may help to explore an
“allo-ICD” as compared with an ICD in cancer. At least the
four therapy-induced mandatory factors promoting tumor
ICD (CALR, eATP, HMGB1, and type I IFN/CXCL10)
have been shown to be implicated in IRI as well (84, 174,
255, 617, 636, 639, 698) (compare FIGURE 11).

Another approach to allotolerance induction, achieved in
the absence of injury, might lie in the validation of anec-
dotal studies on the administration of highly purified (ultra-
centrifuged) xenogeneic proteins (gammaglobulins) that
were shown to successfully induce tolerance in mice, dogs,
and humans (60, 137, 339). In pursuing this principle of

tolerance induction by using a soluble, partially purified
fraction of histocompatibility (H)-2a antigen, induction of
specific tolerance of humoral-antibody formation was ob-
served in mice injected with this soluble antigen since birth;
however, cell-mediated immunity, as measured by skin
graft survival, remained intact (356). Although these early
observations were only partially successful, newer refined
methods for optimal purification of histocompatibility an-
tigens may justify the conduction of similar studies using
escalating doses of highly purified HLA antigens.

Accumulating data indicate that 1) tumor cells can convert
specific DC subsets into regulatory (“tolerogenic”) DCs
that stimulate Treg cell proliferation, and 2) tumor mi-
croenvironment can alter myeloid cells by converting them
into MDSCs that are an important component of a cancer-
induced immunosuppressive milieu (290, 564, 687). Future
research efforts in this regard appear to be well justifiable
(429). Provided the cell death targeting strategies and the
associated lack of DAMP release, any transplantation-asso-
ciated allograft injury and its early consequences should be
preventable, at least that is the theory.

To generate a successful allotolerance induction, experi-
ments should especially be designed to allow presentation
of alloantigens under subimmunogenic conditions in an un-
damaged noninflammatory microenvironment. This con-
cept has already been successfully applied in a murine
model of tolerance induction to the single immunodomi-
nant class II MHC-presented male (HY) peptide (653). Fi-
nally, when methods to prevent the initial allograft injury
fail or are insufficient, transplant researchers could strive
for exploring a potential role of RN and DAMP-induced
stress responses such as UPR and DDR in allografts exposed
to injuries such as IRI. Such studies may pave the way to
identify molecules involved in UPR and DDR as new targets
for innovative immunosuppressive therapy. The transient
use of inhibitors directed against RN and/or selected classes
of DAMPs, during the time when an allograft is exposed to
an injury, is an effective treatment to prevent allograft re-
jection including antibody-mediated rejection. We predict
that such therapeutic approaches would ideally include
combinational use of inhibitors preventing the release of
DAMPs from cells that undergo RN (380). In this context,
ferroptosis might be of special interest for kidney and liver
transplantation.

IX. SUMMARY ON ORIGIN AND
CONSEQUENCES OF
NECROINFLAMMATION

In summary, the different facets of necroinflammation ap-
pear to depend on the type of necrosis that induces it and on
the perception of this complex signal by the cells that are
located next to the damage. While all RN pathways release
a general pattern of DAMPs, including entire broken organ-
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elles, necroptosis, ferroptosis, and pyroptosis clearly release
additional specific DAMP patterns. This allows particular
fine tuning of the definite DAMP profile and may explain
why several signaling pathways of necrosis are encoded in
the genome. However, it has still not been ruled out com-
pletely that regulated necrosis actually is of importance dur-
ing development. As recently discovered, salivary gland
cells in Drosophila melanogaster undergo caspase-indepen-
dent cell death during normal development with a clear
implication on the immune response (377). Strictly follow-
ing the nomenclature of cell death, such a pathway should
be referred to as programmed necrosis (182).

From a clinical perspective, many implications of necroin-
flammation are important. In the case of cancer, this may
shape the tumor microenvironment, and research on necro-
inflammation may provide insights into cancer immuno-
therapy. In transplantation, necroinflammation that may be
triggered by ischemia-reperfusion injury should be avoided.
Similarly, necrotic tissues in hypoxic brain and heart may
trigger detrimental organ swelling and arrhythmias. Necro-
sis in several settings of intoxications also is associated with
a significant immune infiltration. Lastly, autoimmunity
may be strongly initiated following failure to remove ne-
crotic tissue. This might explain the increased likelihood for
an acute autoimmune episode following viral/bacterial in-
fections that are cleared by necrosis. We conclude that a
better understanding of necroinflammation as a therapeutic
target is urgently awaited.
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